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from unique) with Abelian gauge fluxes. These gauge backgrounds are topologically char-

acterized by weight vectors of twisted states; one per fixed point or fixed line. The VEV’s

of these states generate the blowup from the orbifold perspective, and they reappear as

axions on the blowup. We explain methods to solve the 24 resolution dependent Bianchi

identities and present an explicit solution. Despite that a solution may contain the MSSM

particle spectrum, the hypercharge turns out to be anomalous: Since all heterotic MSSM

orbifolds analyzed so far have fixed points where only SM charged states appear, its gauge

group can only be preserved provided that those singularities are not blown up. Going

beyond the comparison of purely topological quantities (e.g. anomalous U(1) masses) may

be hampered by the fact that in the orbifold limit the supergravity approximation to lowest

order in α′ is breaking down.
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1 Introduction

One of the central tasks of string phenomenology is to build models which make contact

with the observations of the real world. A basic step towards this goal is the construction of
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models in which gauge interactions and chiral matter are those of a (Minimal) Supersym-

metric extension of the Standard Model of Particle Physics (MSSM). In the resulting frame-

work one may hope to comprehend the nature of supersymmetry breaking, and recover the

properties of the particle masses and couplings as part of the Standard Model. In this ap-

proach we implicitly assume that we can disentangle the problem of finding the correct mat-

ter spectrum from the issue of breaking four dimensional supersymmetry in string theory.

This basic step of obtaining MSSM-like models from string theory has been faced in

the past from many different perspectives with some remarkable successes: Among the

others, we would like to mention interesting findings based on purely Conformal Field

Theory (CFT) constructions, like the so-called free-fermionic formulation [1], the Gepner

models [2], and the rational conformal field theory models [3]. Most of the other approaches

are geometrical in nature. Among these we would like to remind the reader of the works

of [4–6] in the intersecting D-brane context (see also references therein for models including

chiral exotics), those of [7] for what concerns local constructions with D3 branes at singular-

ities in Type IIB string theory, those of [8–11] for similar constructions in a local F-theory

language, and those of [12] for globally consistent GUT models from intersecting D7-branes.

Finally, there has been recent progress in heterotic model building by [13] on smooth (el-

liptically fibered) Calabi Yau spaces that resulted in interesting constructions [14–18]. The

results of [19, 20] on heterotic orbifold model building were further exploited by [21, 22].

Each construction has peculiar properties and shows a certain amount of complemen-

tarity: Models can be global or only local. They may be obtained via elaborate computer

scans or in a more geometric/constructive perspective, and they may or may not incor-

porate issues such as moduli stabilization, decoupling of exotics, Yukawa textures, etc.

Comparing these diverse approaches can have severe impacts, as one might be able to use

the good features of a given construction to overcome the limitations of others. Bring-

ing these different approaches together can be achieved by using the duality properties of

string theory (e.g. S-duality linking heterotic strings to type I strings, or T-duality linking

IIB with IIA). Often this requires to overcome a language dichotomy by attaining some

dictionary between the different terminologies.

The dichotomy between CFT construction of heterotic strings on orbifolds and the

corresponding supergravity compactifications on smooth Calabi-Yau manifolds will be one

of the central themes of the current paper. Heterotic orbifolds allow for a systematic

computer assisted search that can be very effective: In e.g. [19–22], based on the embedding

in string theory of the orbifold-GUT picture (see e.g. [23]), more than two hundred MSSM-

like models have been assembled on the orbifold T 6/Z6–II. However, the CFT construction

of heterotic orbifold models are only valid at very specific (orbifold) points of the string

moduli space. This hinders the introduction of simple moduli stabilization mechanisms

such as those due to flux compactifications [24]. Moreover, the generic presence of an

anomalous U(1) in orbifold models induces Fayet-Iliopoulos terms driving them out of the

orbifold points, which might shed uneasiness on consistency of the orbifold construction.

Obtaining good models by compactifying the heterotic supergravity on smooth Calabi-Yau

manifolds is a very challenging mathematical problem, and only a handful of such models

have been uncovered so far. Establishing a more and more detailed glossary between
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heterotic orbifold and Calabi-Yau compactifications has been one of the essential challenge

pursued in the papers [25–29] for heterotic strings on simple (mostly non-compact) orbifolds

and their supergravity counterpart on their explicit blowups and topological resolutions.

Our aim is to extend these results to the heterotic T 6/Z6–II orbifold that has been the

spring of the largest set of MSSM-like models constructed from strings to date.

In this paper we outline how to construct smooth Calabi-Yau manifolds from the

orbifold T 6/Z6–II, and how to identify the supergravity analog of the T 6/Z6–II heterotic

models. These smooth Calabi-Yau’s are compiled in steps: The local orbifold singularities

are resolved using techniques of toric geometry, and they are subsequently glued together

according to the prescriptions presented in [30]. During the local resolution process we are

able to detect the “exceptional divisors”: the four-cycles (compact hyper surfaces) hidden

in the orbifold singularities. The local orbifold singularity is blown up once the volumes

of the exceptional divisors become non-zero. The compact orbifold in addition has “in-

herited cycles”, that are four dimensional sub-tori of T 6. Combining the knowledge of the

exceptional and inherited cycles we come in the possession of a complete description of the

set of two- and four-cycles/forms of the orbifold resolutions, including their intersection

ring (i.e. all their intersection numbers). Let us stress that the single T 6/Z6–II orbifold

has a very large number of topologically distinct resolutions. Depending on one’s perspec-

tive this means that out of this orbifold many Calabi-Yaus are constructed, or that the

corresponding Calabi-Yau has a large number of phases related by so-called flop transitions.

The description of cycles is perfectly compatible with the supergravity language, and

thus we can consider compactifications of ten dimensional heterotic supergravity on the

resolved spaces. By embedding U(1) gauge fluxes on the hidden exceptional cycles we are

able to obtain the gauge symmetry breaking and the chiral matter localized on the resolved

singularities, that are the supergravity counterparts of the action of the orbifold rotation

on the gauge degrees of freedom (and Wilson lines), and the twisted states, respectively.

In this way we determine the relationship between the CFT data of heterotic T 6/Z6–II

orbifold and supergravity and super Yang-Mills on its resolutions.

Following this procedure we can potentially describe resolutions of every T 6/Z6–II

heterotic orbifold model in the supergravity language. To investigate the properties of

such resolution models, we apply our approach to a specific MSSM model (“benchmark

model 2” of [21, 22]) as a concrete testing case. This example illustrates a number of generic

features of such blowups: we can identify a number of generic features of such blowups:

We uncover an intimate relation between the specifications of the U(1) flux background

and the twisted states that generate the blowup from the orbifold point of view. The

Standard Model hypercharge turns out to be always broken in complete blowup. This is

due to the fact that the full blowup requires non-vanishing VEVs for twisted states at all

fixed points, and some fixed points only have states charged under the Standard Model,

hence at least the hypercharge is always lost. We stress that this does not depend on

the specific choice we make for the gauge bundle. We comment in the conclusions about

possible phenomenological consequences of this result as well as about how to avoid it.

The paper has been organized as follows:

Section 2 briefly reviews the heterotic orbifolds, specifying the details necessary to
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understand the T 6/Z6–II orbifold of the heterotic E8×E8 string. As a particular example

of a MSSM-like model the “benchmark model 2” of [21, 22] is recalled.

Section 3 explains how to resolve the T 6/Z6–II orbifold using toric geometry and gluing

procedures presented in [30]. We first describe the three different possible singularities

present in the orbifold, namely C
2/Z2, C

2/Z3 and C
3/Z6–II. The first two singularities are

resolved in a unique way. Contrary to this, a C
3/Z6–II singularity has five possible distinct

resolutions. Since the T 6/Z6–II orbifold contains 12 C
3/Z6–II singularities, the number

of topologically different resolutions is huge: The most naive estimate would be 512; the

number of resolutions that lead to distinct models is close to two million.

Section 4 considers ten dimensional heterotic supergravity on a generic resolution of

T 6/Z6–II. Following the procedure of [27] we introduce U(1) gauge fluxes wrapped on

the exceptional divisors. We describe how to single out the gauge fluxes such that they

correspond to the embedding of the orbifold rotation and the Wilson lines in the gauge

degrees of freedom in the heterotic orbifold theory. The Bianchi identity leads to a set

of 24 coupled consistency conditions on the fluxes which depend on the local resolutions

chosen. Solving them almost seems to be a mission impossible. However, by identifying

the localized axions on the blowup with the twisted states of orbifold theory, that generate

the blowup via their VEV’s, shows that the U(1) fluxes are in one-to-one correspondence

to the defining gauge lattice momenta of these states. The massless chiral spectrum of the

model is computed by integrating the ten dimensional gaugino anomaly polynomial and

turns out to suffer from a multitude of anomalous U(1)’s, among them the hypercharge.

Section 5 illustrates our general findings on resolutions of heterotic MSSM-like orb-

ifolds, by specializing to the study of the blowup of the MSSM orbifold model “benchmark

model 2”. We outline how solutions to the 24 coupled Bianchi identities can be updated,

and illustrate that the line bundle vectors correspond to twisted states. In particular, we

illustrate that the hypercharge is broken in full blowup.

Finally, section 6 contains our conclusions, and additional technical details have been

collected in the appendices.

2 Heterotic T 6/Z6–II MSSM models

2.1 Orbifold geometry

First we want to give some general properties of orbifolds, as given for example in [31, 32]

or [33]. Later we will examine in detail the T 6/Z6–II orbifold on G2×SU(3)×SO(4), where

we use the conventions of [22].

General description of T 6/ZN orbifolds

A T 6/ZN orbifold is produced by identifying the points of a six-dimensional torus T 6 under

the action of a discrete symmetry ZN. Using complex coordinates zi = 1√
2

(
x2i−1 + i x2i

)

(i = 1, 2, 3), the action of the ZN-twist θ is

z 7→ θ z with θi
j = e2πiϕi

δi
j . (2.1)
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The order N of the symmetry constrains the orbifold twist vector ϕ,

θN = 1 ⇒ Nϕi = 0 mod 1 . (2.2)

Furthermore, the twist θ must fulfill the Calabi-Yau condition

∑

i

ϕi = 0 mod 1 . (2.3)

One can also consider an orbifold as being produced by modding out its space group S from

R
6. S is defined as a combination of twists and torus shifts l. Here l = maea (summation

over a = 1, . . . , 6), where the ea define a basis of the torus lattice of T 6. The space group

yields an equivalence relation,

z ∼
(
θk, l

)
z ≡ θkz + l , (2.4)

on R
6. The elements of S fulfill the simple multiplication rule

(
θk1, l1

)
·
(
θk2, l2

)
=(

θk1+k2, θk1l2 + l1
)
. In this picture, the torus T 6 is produced by dividing R

6 by the basis

vectors ea, and one can take R
6 as the covering space of the orbifold.

The space group does not act freely, i.e. there are fixed points. A (non-trivial) space

group element
(
θk, l

)
specifies a fixed point f up to shifts by the torus vectors:

f =
(
θk, l

)
f = θkf + l , with l = maea , ma ∈ Z . (2.5)

If one now takes the fundamental domain of the torus as the cover for the orbifold, the

fixed points in this domain will have different space group elements with a one-to-one

correspondence between them.

If the twist acts trivially in one complex plane, i.e. θkzi = zi for one i, one obtains a

two dimensional fixed subspace. On the cover, such a space looks like a torus and is often

referred to as a fixed torus. However, on the orbifold the topology is not necessarily that

of a torus, but it can also be a two dimensional orbifold. Since in any way one complex

coordinate is not affected, we also call those subspaces fixed (complex) lines.

T 6/Z6–II on G2 × SU(3) × SO(4)

We consider the torus T 6 obtained by dividing out R
6 by the root lattice of G2 × SU(3)×

SO(4). Since the lattice factorizes in three two dimensional parts, the same will be true

for the torus. Therefore T 6 can be depicted by three parallelograms spanned by the simple

root vectors of G2×SU(3)×SO(4), as given in table 1. The orbifold twist vector for Z6–II is

ϕ =
1

6
(0, 1, 2,−3) , (2.6)

where the 0-th entry ϕ0 = 0 is included for later use. Therefore, a single twist acts

as a counterclockwise rotation of 60◦ and 120◦ on the first and second torus and as a

(clockwise) rotation of 180◦ on the third. The general structure of singularities, appearing

after modding out the Z6–II action, is shown in figure 1. The numbers denote the locations

– 5 –
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torus basis vectors on

R
2

C R
2

C

T 2
1 on G2 e1 =




1

0


, 1 e2 =




−1
2

1
2
√

3


, 1√

3
e5πi/6

T 2
2 on SU(3) e3 =




1

0


, 1 e4 =




−1
2

√
3

2


, e2πi/3

T 2
3 on SO(4) e5 =




1

0


, 1 e6 =




0

1


, i

Table 1. The basis vectors of the root lattice G2 × SU(3) × SO(4), in real and complex notation.

Figure 1. The general fixed point structure of the T 6/Z6–II orbifold. For each complex plane,

equal numbers denote singularities that are mapped to the same point of the orbifold.

of the orbifold singularities. Singularities in the covering space (i.e. the torus) that are

identified on the orbifold are labeled by the same number.

In order to obtain the detailed fixed point structure we look at every twist θk-sector

separately. For the twist θ (and its inverse θ5) one obtains the full order of the group Z6.

The fixed points are shown in figure 2. They are labeled by α in the first torus, by β in

the second and by γ in the third. The lattice shifts needed to bring the points back after

a rotation are given in the table of figure 2. Since α = 1 in the first and fifth sector, the

fixed points are determined by β and γ. Next we consider the fixed points in the θ2– and

θ4-sector with twists 2ϕ = 1
3 (0, 1, 2, 0) and 4ϕ = 1

3 (0, 2, 1, 0), respectively. The order of

these twists is 3 and they act trivially on the third torus. Thus, concentrating solely on

the θ2– and θ4-sector, the compactification can be described as a T 4/Z3 orbifold resulting

in a six-dimensional theory. The fixed lines of the T 4/Z3 orbifold are shown in figure 3. By

comparing with figure 1 we see that the points α = 3 and α = 5 correspond to the same

point on the orbifold as they are mapped onto each other by further twists. Hence, there

are six independent fixed lines, labeled by α = 1, 3 and β = 1, 2, 3. The corresponding

lattice shifts are given in the table of figure 3. At last we examine the θ3-sector. Here, the

twist 3ϕ = 1
2(0, 1, 0,−1) leaves the second torus invariant and acts with order two. In this

case one obtains T 4/Z2 fixed lines, depicted in figure 4. Again one notes by comparing

– 6 –
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3

2

2

3 4

e3

e4

β = 1
e5

γ =1

e6

e1

α = 1

e2

××

torus shifts lβγ in the θ-sector
H

H
H

H
H

H
β

γ
1 2 3 4

1 0 e5 e6 e5 + e6

2 e3 e3 + e5 e3 + e6 e3 + e5 + e6

3 e3 + e4 e3 + e4 + e5 e3 + e4 + e6 e3 + e4 + e5 + e6

torus shifts lβγ in the θ5-sector
H

H
H

H
H

H
β

γ
1 2 3 4

1 0 e5 e6 e5 + e6

2 e3 + e4 e3 + e4 + e5 e3 + e4 + e6 e3 + e4 + e5 + e6

3 e4 e4 + e5 e4 + e6 e4 + e5 + e6

Figure 2. Upper figure: the fixed points in the θ– and θ5-sector. They are labeled by α = 1,

β = 1, 2, 3 and γ = 1, . . . , 4. Lower table: the corresponding torus shifts lβγ , see equation (2.5).

For example, the space group element associated to the fixed point β = 2 and γ = 1 in the θ-sector

reads (θ, l21) = (θ, e3).

with figure 1 that the points α = 2, 4 and 6 are mapped onto each other by further twists

and correspond to one point on the orbifold. Hence there are eight independent fixed lines,

labeled by α = 1, 2 and γ = 1, . . . , 4. The lattice shifts for this sector are given in the table

of figure 4.

2.2 Heterotic orbifold models

Next, we review some technical details of the compactification of the heterotic string on

orbifolds. The starting point of our discussion is the consideration of boundary conditions

for closed strings. On orbifolds, there are new boundary conditions associated to non-trivial

elements of the space group, i.e. g ∈ S defines a boundary condition X(τ, σ+2π) = g X(τ, σ)

for the six compactified dimensions of the string. If g is not freely-acting (i.e. it has a fixed

point), the string is attached to the fixed point and g is called the constructing element of

a so-called twisted string. On the other hand, strings with a constructing element g = 11

correspond to the ordinary strings of the ten-dimensional heterotic string theory (being

the supergravity and the E8 × E8 gauge multiplets). They are henceforth referred to as

untwisted strings.

However, the geometrical action of the space group is not sufficient to define a consis-

tent compactification. One needs to accompany the geometrical action of S by some action

in the 16 gauge degrees of freedom, in our case in E8 ×E8. In the case of shift embedding,

– 7 –
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5

3

2
3

e5

e6

e2

e1

×

e4

e3

β = 1

×
α = 1

torus shifts lαβ in the θ2-sector
H

H
H

H
H

H
α

β
1 2 3

1 0 e3 + e4 e4

3 −e2 −e2 + e3 + e4 −e2 + e4

5 −2e2 −2e2 + e3 + e4 −2e2 + e4

torus shifts lαβ in the θ4-sector
H

H
H

H
H

H
α

β
1 2 3

1 0 e3 e3 + e4

3 e1 + e2 e1 + e2 + e3 e1 + e2 + e3 + e4

5 2e1 + 2e2 2e1 + 2e2 + e3 2e1 + 2e2 + e3 + e4

Figure 3. Upper figure: the fixed lines in the θ2– and θ4-sector. They are labeled by α = 1, 3, 5

and β = 1, 2, 3, where the points α = 3 and α = 5 are identified on the orbifold. Lower table: the

corresponding torus shifts lαβ .

2

3 4

2

64

e5

e6

γ =1

e4

e3

e1
α = 1

e2

××

torus shifts lαγ in the θ3-sector
H

H
H

H
H

H
α

γ
1 2 3 4

1 0 e5 e6 e5 + e6

2 e1 e1 + e5 e1 + e6 e1 + e5 + e6

4 e2 e2 + e5 e2 + e6 e2 + e5 + e6

6 e1 + e2 e1 + e2 + e5 e1 + e2 + e6 e1 + e2 + e5 + e6

Figure 4. Upper figure: the fixed lines in the θ3-sector. They are labeled by α = 1, 2, 4, 6 and

γ = 1, . . . , 4, where the points α = 2, α = 4 and α = 6 are identified on the orbifold. Lower table:

the corresponding torus shifts lαγ .
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the most general embedding of the space group is

g =
(
θk,maea

)
→֒ Vg = kV + maAa . (2.7)

That is, whenever a rotation by θk and a translation by maea is performed in the six

compact dimensions of the orbifold, the 16 gauge degrees of freedom are shifted by Vg =

kV + maAa, summation over a = 1, . . . , 6. V is called the shift vector and Aa are (up to

six) Wilson lines. They are constrained to lie in the E8 × E8 root lattice Λ as follows:

N V ∈ Λ and Na Aa ∈ Λ , (2.8)

no summation over a. The order Na of the Wilson line Aa is determined by the action of the

twist in the direction of the Wilson line. In addition, Wilson lines have to be constrained

due to further geometrical considerations. In the case of the Z6–II orbifold this results in

three independent Wilson lines, A3 (of order 3) and A5, A6 (both of order 2) with the

identifications

A1 = A2 = 0 , A3 = A4 = W3 , A5 = W2 , and A6 = W ′
2 , (2.9)

where W3, W2 and W ′
2 are introduced for later use.

Additionally, modular invariance of one-loop amplitudes imposes strong conditions on

the shifts and Wilson lines. In ZN orbifolds, the order N shift V and the twist ϕ must

fulfill [32, 34]

N
(
V 2 − ϕ2

)
= 0 mod 2 . (2.10)

In the presence of Wilson lines, there are additional conditions

Na (Aa · V ) = 0 mod 2 , (2.11a)

Na

(
A2

a

)
= 0 mod 2 , (2.11b)

Qab (Aa · Ab) = 0 mod 2 (a 6= b) , (2.11c)

where Qab ≡ gcd(Na, Nb) denotes the greatest common divisor of Na and Nb [35].1

The spectrum

The coordinates of a string can be split into left- and right-movers, i.e. X(τ, σ) = XL(τ +

σ) + XR(τ − σ) on-shell. After quantization, a string is described by a state of the form

|q〉R⊗α̃|p〉L. Here, q denotes the momentum of the (bosonized) right-mover (describing the

space-time properties of the string) and p labels the left-moving momentum of the 16 gauge

degrees of freedom (describing the strings representation under gauge transformations).

Furthermore, α̃ denotes possible oscillator excitations. In general, physical states have to

satisfy the mass-shell conditions for left- and right-movers, i.e.

M2
L

8
=

(p + Vg)
2

2
+ Ñ − 1 + δc and

M2
R

8
=

(q + ϕg)
2

2
− 1

2
+ δc , (2.12)

1In the case of two order 2 Wilson lines in an SO(4) torus, Qab = gcd(2, 2) = 2 can be replaced by

Qab = 4.
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and the so-called level-matching condition M2
L = M2

R. Here, Vg denotes the local shift (2.7)

corresponding to the constructing element g =
(
θk,maea

)
of the (twisted) string. Anal-

ogously, ϕg = kϕ is called the local twist. Furthermore, δc yields a change in the zero-

point energy and is given by δc = 1
2

∑3
i=1 ωi(1 − ωi), where ωi = (ϕg)i mod 1 such that

0 ≤ ωi < 1. It is convenient to define the shifted momentum psh = p + Vg, as twisted

strings transform according to their weight psh under gauge transformations.

If the local twist ϕg is non-trivial, i.e. ϕi
g 6= 0 for i = 1, 2, 3, the compact space is

six-dimensional resulting in an effective four dimensional theory. Furthermore, the 0-th

component q0 of the solution q to the right-moving mass-shell condition (2.12) defines four

dimensional chirality, being q0 = ±1
2 , 0 in this case. This corresponds to a chiral multiplet

of N = 1 supersymmetry (and its CPT conjugate). For Z6–II, this is the case for the θ

/ θ5-sector, which therefore contains only chiral multiplets of N = 1 supersymmetry in

four dimensions. On the other hand, if the twist acts trivially in one complex plane, i.e.

ϕi
g = 0 for i 6= 0, the compact space is first of all only four dimensional resulting in an

effective theory in six dimensions. The massless states are then hyper multiplets of N = 1

supersymmetry in six dimensions. For Z6–II, this is the case for the higher θk-sectors,

k 6= 1, 5. However, as we will see in the following, these hyper multiplets are decomposed

into chiral multiplets of four dimensional N = 1 supersymmetry when forming orbifold

invariant states.

Orbifold invariant states

The general idea is that orbifolded strings have to be compatible with the underlying

orbifold space. To ensure this one has to analyze the action of the space group on the

string states, i.e. under the action of some element h ∈ S, the state |q〉R ⊗ α̃|p〉L with

constructing element g ∈ S transforms with a phase

|qsh〉R ⊗ α̃|psh〉L h7→ Φ|qsh〉R ⊗ α̃|psh〉L . (2.13)

The transformation phase Φ reads in detail

Φ = e2πi [psh·Vh−r·ϕh] Φvac , where Φvac = e2πi [− 1
2
(Vg·Vh−ϕg·ϕh)] . (2.14)

Φvac is called the vacuum phase; for simplicity we assume that it can be set to 1 in this

subsection. Furthermore, in order to summarize the transformation properties of q + ϕg

and of the oscillators we have introduced the so-called R-charge2

ri = qi + ϕi
g − Ñ i + Ñ∗i . (2.15)

Ñ i and Ñ∗i, i = 0, . . . , 3, are integer oscillator numbers, counting the number of left-

moving oscillators α̃i and α̃ī, i = 1, 2, 3 and ī = 1̄, 2̄, 3̄, acting on the ground state |p〉L,

respectively. In detail, they are given by splitting the eigenvalues of the number operator

Ñ according to Ñ = ωiÑ
i + ω̄iÑ

∗i, where ωi = (ϕg)i mod 1 and ω̄i = −(ϕg)i mod 1 such

that 0 ≤ ωi, ω̄i < 1.

2These R-charges correspond to discrete R-symmetries of the superpotential in the context of string

selection rules for allowed interactions.
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In general, the transformation phase (2.14) has to be trivial in order for a string to be

compatible with the orbifold background. In other words, strings with Φ 6= 1 have to be

removed from the spectrum. However, for a given string with constructing element g ∈ S

we do not need to consider the action of all elements h ∈ S. It is useful to distinguish two

cases for h:

Case 1: gh = hg

In the first case, g and h commute (gh = hg). This condition can be interpreted as a string

located at the fixed point of g but having still some freedom to move, especially in the

direction of h (e.g. when g is from the θ2-sector of the Z6–II orbifold, it has a fixed torus

in the e5, e6 direction. Then, h = (11, e5), (11, e6) corresponds to loops on which the string

can move around). In this case the transformation phase (2.14) has to be trivial, i.e.

psh · Vh − r · ϕh
!
= 0 mod 1 (2.16)

In other words, the total vertex operator of the state with boundary condition g has to be

single-valued when transported along h if h is an allowed loop, hg = gh.

For Z6–II, this projection acts for example on the higher θk-sectors with k 6= 1, 5 in two

ways: 1) by Wilson lines in the fixed torus and 2) by a projection on θ. We concentrate

on the second case. For example, for α = 1 and γ = 1 in the θ3-sector, the constructing

element
(
θ3, 0

)
obviously commutes with (θ, 0), see figure 4. This induces the condition

psh · V − r · ϕ = 0 mod 1. In general, this kind of conditions can remove parts of the

localized spectrum, or in some cases even the complete massless localized matter of some

fixed lines.

Example for Case 1: breaking of E8 × E8

One further important example of equation (2.16) is the breaking of the ten dimensional

gauge group E8 ×E8 by the orbifold compactification. Gauge bosons are untwisted strings

(with constructing element g = 11). Hence, all elements h of the space group commute and

induce projection conditions. As r · ϕh = q · ϕh = 0 for the gauge bosons, this leads to the

following conditions on the roots p ∈ Λ (with p2 = 2) of the unbroken gauge group

p · V !
= 0 mod 1 and p · Aa

!
= 0 mod 1 for a = 1, . . . , 6 . (2.17)

Case 2: gh 6= hg

In the second case, g and h do not commute (gh 6= hg). Then, h maps the fixed point

of g to an equivalent one, which corresponds to the space-group element hgh−1. In other

words, a string located at g cannot move along the direction of h. But still, the state

corresponding to g has to be invariant under the action of h. Therefore, one has to build

linear combinations of states located at equivalent fixed points. These equivalent fixed

points are distinguishable only in the covering space of the orbifold (for example, for Z6–II,

states from the θ2-sector located at the two fixed points α = 3, 5 have to be combined,
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since θ3 maps the corresponding fixed points to each other, see figure 3). These linear

combinations can in general involve relative phases γ, i.e.

∑

n

(
e−2πi n γ |qsh〉R ⊗ α̃|psh〉L ⊗ |hn g h−n〉

)
= |qsh〉R ⊗ α̃|psh〉L ⊗

(∑

n

e−2πi n γ |hn g h−n〉
)

,

(2.18)

where |g′〉 = |hn g h−n〉 denotes the localization of the state at the fixed point of g′ ∈ S and

γ = integer/N . The geometrical part of the linear combination transforms non-trivially

under h ∑

n

e−2πinγ |hn g h−n〉 h7→ e2πi γ
∑

n

e−2πi n γ |hn g h−n〉 . (2.19)

Now, h has to act as the identity on the linear combination. Consequently, we have

to impose the following condition using the equations (2.14), (2.18) and (2.19) for non-

commuting elements:

psh · Vh − r · ϕh + γ
!
= 0 mod 1 . (2.20)

However, given some solution to the mass equations (2.12) one can always choose an ap-

propriate γ to fulfill this condition. In this sense, equation (2.20) does not remove states

from the spectrum and is hence not a projection condition.

Anomalous U(1)

Using the material discussed so far, one can construct consistent heterotic orbifold models.

One way to check their consistency is to analyze whether all gauge anomalies of the massless

spectrum vanish. For example, for a U(1) gauge factor there are several possible anomalies:

U(1) − grav − grav, U(1) − U(1) − U(1),

U(1) − G − G, and U(1) − U(1)′ − U(1)′ ,
(2.21)

where G denotes a non-Abelian gauge group factor (like SU(2)) and U(1)′ is another U(1)

factor. We denote the 16-dim. vector that generates a U(1) by t and the associated charge

by Q. Then, a state with left-moving momentum psh carries a charge Q = psh · t. However,

it is known that in heterotic compactifications one U(1) factor can seem to be anomalous,

where we denote its generator by tanom and its charge by Qanom. Then, the anomalous

U(1) has to satisfy the following conditions [36, 37]

1

24
Tr Qanom =

1

6|tanom|2 Tr Q3
anom = Tr ℓQanom =

1

2|t|2 Tr Q2Qanom =
1

2
|tanom|2 6= 0 (2.22)

in order to be canceled by the universal Green-Schwarz mechanism, i.e. by a cancelation

induced from the anomalous transformation of the axion αorb. Here, ℓ is the Dynkin index3

with respect to the non-Abelian gauge group factor G. Since all other anomalies vanish

this results in an anomaly-free theory.

3The Dynkin index ℓ(r(f)) of some representation rf is defined by ℓ(r(f)) δab = tr(ta(r(f)) tb(r
(f))), using

the generator ta of G in the representation rf . The conventions are such that ℓ(M) = 1/2 for SU(M) and

ℓ(M) = 1 for SO(M).
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# irrep. label # irrep. label

3 (3,2;1,1)1/6 qi 3
(
3,1;1,1

)
−2/3

ūi

7
(
3,1;1,1

)
1/3

d̄i 4 (3,1;1,1)−1/3 di

8 (1,2;1,1)−1/2 ℓi 5 (1,2;1,1)1/2 ℓ̄i

3 (1,1;1,1)1 ēi

47 (1,1;1,1)0 s0
i 26 (1,1;1,2)0 hi

20 (1,1;1,1)1/2 s+
i 20 (1,1;1,1)−1/2 s−i

2 (1,1;1,2)1/2 x+
i 2 (1,1;1,2)−1/2 x−

i

4
(
3,1;1,1

)
−1/6

ϕ̄i 4 (3,1;1,1)1/6 ϕi

2 (1,2;1,2)0 yi 9 (1,1;8,1)0 wi

4 (1,2;1,1)0 mi

Table 2. The massless spectrum of the benchmark model 2 contains three generations of quarks

and leptons plus vector-like exotics. The representations (irrep.) with respect to SU(3) × SU(2) ×
SO(8) × SU(2) are shown, where the hypercharge is given as a subscript.

2.3 Example: benchmark model 2

The so-called “benchmark model 2” [21, 22, 38] is defined by the shift V and two non-trivial

Wilson lines W3 and W2, i.e.

V =
( 1

3
, -

1

2
, -

1

2
, 02, 03

)(
0, -

2

3
, 02, 03, 1

)
, (2.23a)

W2 =
( 1

4
, -

1

4
, -

1

4
, -

1

4

2

,
1

4

3)(
-
3

2
,

1

2
, 02, 03, 0

)
, (2.23b)

W3 =
(

-
1

2
, -

1

2
,

1

6
,

1

6

2

,
1

6

3)( 4

3
, 0, -

1

3

2

, 03, 0
)

, (2.23c)

and the Wilson line W ′
2 corresponding to the e6 direction is set to zero, W ′

2 = 0.4 These

vectors satisfy the modular invariance conditions (2.10), (2.11). The gauge group of the

four dimensional theory is

G = G′×G′′ where G′ = SU(3)×SU(2)×U(1)5 and G′′ = SO(8)×SU(2)×U(1)3 . (2.24)

G′ and G′′ originate from the first and second E8, respectively. A U(1)Y hypercharge

generator can be defined by

Y =

(
0, 0, 0,

1

2

2

, -
1

3

3
)(

0, 0, 02, 04
)

, (2.25)

such that the observable sector G′ only contains the Standard Model gauge group times

some U(1) factors, while the hidden sector G′′ contains further non-Abelian gauge factors.

The massless matter spectrum is given in table 2. It contains three generations of

quarks and leptons plus vector-like exotics. It turns out that one U(1), generated by

tanom =

(
-
7

3
, 1,

5

3
, -

1

3

2

, -
1

3

3
)(

-
2

3
,
2

3
,
2

3

2

, 04

)
, (2.26)

4The shift and the Wilson lines are given here in a different, but equivalent form compared to [21]
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is anomalous with Tr Qanom = 416/3. Obviously, the generator tanom mixes hidden and

observable sectors. However, the hypercharge is non-anomalous because its generator is

orthogonal to the anomalous one, i.e. Y ·tanom = 0. Furthermore, as expected, the anomaly

fulfills the universality condition (2.22) and consequently can be canceled by the Green-

Schwarz mechanism.

Finally, we briefly review the conditions for a supersymmetric vacuum of the bench-

mark model 2. Due to the anomalous U(1), the corresponding D-term contains the so-called

Fayet-Iliopoulos (FI) term, i.e.

Danom ∼
∑

φ

Qφ
anom|φ|2 + ξ with ξ =

M2
s Tr Qanom

192π2
≈ 0.1M2

s . (2.27)

Thus, a supersymmetric vacuum with D = 0 forces some fields (with negative anomalous

U(1) charge Qφ
anom < 0) to obtain VEVs. In [22] it is shown that there are non-trivial

solutions in which the Standard Model gauge group is left unbroken while all additional

U(1) factors are broken and, furthermore, in which the vector-like exotics get massive and

decouple from the low energy effective theory. In these configurations there are some fixed

points where more than one twisted state acquires a VEV. In addition, there are also fixed

points where no twisted state has a non-trivial VEV, e.g. the fixed point in the θ-sector

with β = 1 and γ = 2.

3 Resolutions of T 6/Z6–II

Since it is crucial for the derivation of the main results of this paper, we want to give a

comprehensive review of the techniques needed to resolve compact orbifolds. This is mainly

based on [27, 30, 39–41]. Mathematical fundamentals can be found in [42–44].

Before going into details, we want to outline the general strategy. The main step is to

subdivide the problem of resolving a compact orbifold into the easier problem of resolving

several non-compact orbifolds. This is done by considering every fixed point separately

in the sense that it is “far away” from other fixed points and can be locally considered

as the fixed point of a non-compact orbifold. Then one can identify the group of this

orbifold, which is a subgroup of the group acting in the compact case. This provides all

the information needed to resolve the singularities locally.

To obtain the resolution of the compact orbifold, one has to combine the local infor-

mation in a proper way. This procedure is referred to as “gluing” and can be achieved by

considering global information coming from the torus T 6. The final result of this proce-

dure will be topological informations about the resolved orbifold, which is needed in later

computations.

3.1 Local resolutions

First we determine which subgroup of Z6–II acts on which kind of fixed objects. As was

stated in section 2.1 one obtains 12 fixed points under the full action of Z6–II with the

labels (α = 1, β, γ) where β runs from 1 to 3 and γ form 1 to 4 (compare also with figure 2).
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Furthermore, there are 6 independent Z3 fixed lines out of which 3 are simply fixed lines

(α = 1, β = 1, 2, 3) and 3 are the combination of two equivalent fixed lines (α = 3, β =

1, 2, 3; the fixed lines denoted by α = 3 and α = 5 in figure 3 are identified on the orbifold).

At last there are 8 independent Z2 fixed lines that are subdivided in a similar way: the

ones with α = 1 are just fixed lines and the ones with α = 2 are a combination of the

three equivalent lines that are denoted by α = 2, 4, and 6 in figure 4. Therefore we obtain

locally three different types of orbifolds that we have to resolve: C
3/Z6–II for the Z6–II fixed

points, C
2/Z3 for the Z3 fixed lines and C

2/Z2 for the Z2 fixed lines.

How to resolve non-compact orbifolds is a well-known problem in toric geometry. A

mathematical introduction to toric geometry is given in [44]. The orbifold case is covered

in [27, 30, 41]. The main tool in the resolving procedure is the toric diagram of the orbifold,

which is constructed in the following way. The orbifold group ZN acts in the d-dimensional

complex space C
d like

θ : (z1, . . . , zd) 7→
(
e2πiϕ1z1, . . . , e

2πiϕdzd

)
. (3.1)

We can define θ-invariant monomials uj = z
(v1)j

1 · · · z(vd)j

d (j = 1, . . . , d) by fixing a condition

on the vectors vi:

v1ϕ1 + . . . + vdϕd = 0 mod 1 . (3.2)

From the Calabi-Yau condition (2.3) one knows that ϕ1 + . . .+ϕd = 0 mod 1. Due to this,

we can choose the last component of every vector vi to be equal to 1, which means that

the endpoints of all vectors vi lie in a plane. The toric diagram of the orbifold is obtained

by connecting all those points.

A further statement of toric geometry is that every such vector vi can be associated with

a codimension one hypersurface denoted by Di. These hypersurfaces are called ordinary

divisors. Since for each divisor there exists a holomorphic scalar transition function on the

orbifold, a holomorphic line bundle can be associated to each divisor, whose first Chern

class gives the Poincare dual form of the cycle Di. For a holomorphic line bundle this will

be a (1, 1)-form. In what follows, the cycle as well as the form is denoted by Di, since the

context should make clear which object is meant.

To resolve the orbifold one introduces a new class of divisors, called exceptional divisors

Ek. In principle one has to introduce one exceptional divisor for every non-trivial twist

θk 6= 1. This is the case for C
2/ZN orbifolds. In the toric diagram (which is a line in

this case) the exceptional divisors are placed in such a way that the distances between two

divisors are distributed equally. For C
3/ZN orbifolds a more thorough examination yields

the following condition for exceptional divisors, as described in [45]:

If the twist in the k-th sector acts like

θk : (z1, z2, z3) 7→
(
e2πig1z1, e

2πig2z2, e
2πig3z3

)
, k = 1, . . . , N − 1 , (3.3)

an exceptional divisor Ek will be placed in the toric diagram at

wk = g1v1 + g2v2 + g3v3, if

3∑

i=1

gi = 1, and 0 ≤ gi < 1 . (3.4)
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(a) Toric diagram of C
2/Z2.

One exceptional divisor is

needed for the resolution.

(b) Toric diagram of C
2/Z3. Two excep-

tional divisors are needed for the resolu-

tion.

(c) Projection of the toric dia-

gram of C
3/Z6–II. Four excep-

tional divisors are needed for the

resolution.

Figure 5. The toric diagrams of the orbifolds C2/Z2, C2/Z3 and C3/Z6–II. For the C2/ZN orbifolds

also the vectors corresponding to divisors are shown.

The toric diagrams of the resolved orbifolds C
2/Z2, C

2/Z3 and C
3/Z6–II are shown in

figure 5. For the C
2/ZN orbifolds the toric diagram is the line that connects the endpoints

of the vectors. There is one exceptional divisor for the Z2 orbifold, two for Z3 and four for

Z6–II. The divisors of the C
2/ZN orbifolds are named in a way convenient for the gluing

procedure.

The toric diagram is also encoding equivalences up to cohomology for the divisors.

Considering for a moment the singular case (i.e. neglecting the exceptional divisors), one

can construct invariant monomials from the vectors of the toric diagram: uj =
∏d

i=1 z
(vi)j

i

is invariant under the action of θ (where the i-th coordinate zi is associated with the i-th

vector vi and corresponding divisor Di). Then it can be shown that the Di’s fulfill the

equivalence relation
∑

i (vi)j Di ∼ 0 , where the equivalence becomes an equality if the

forms are integrated over a closed boundary. Due to Poincare duality this equivalence up

to cohomology of the forms Di can be turned into an equivalence up to homology of the

cycles Di. This linear equation is modified once the singularity is resolved, since one has to

include the exceptional divisors in the invariant monomials. This is done by associating a

coordinate yr to every Er and introducing a new equivalence relation. Then one can read

off the relations between the divisors:

uj =
∏

i,r

z
(vi)j

i y
(wr)j
r ⇒

∑

i

(vi)j Di +
∑

r

(wr)j Er ∼ 0 . (3.5)
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Figure 6. The five possible triangulations of the resolved toric diagram of C3/Z6–II.

Following this procedure and bringing the relations in such a form that there is only one

Di per relation one obtains from figure 5:

C
2/Z2 : 2D1 + E3 ∼ 0 , C

3/Z6–II : 6D1 + E1 + 2E2 + 3E3 + 4E4 ∼ 0 ,

2D2 + E3 ∼ 0 , 3D2 + E1 + 2E2 + E4 ∼ 0 ,

C
2/Z3 : 3D1 + E2 + 2E4 ∼ 0 , 2D3 + E1 + E3 ∼ 0 .

3D2 + 2E2 + E4 ∼ 0 ,

(3.6)

The main topological information are the intersection numbers of the divisors. Here in-

tersection has a twofold meaning: As long as at least one divisor (or the intersection of

two divisors) is compact as a hypersurface, the term can be taken literally. If this is not

the case, intersection is not well defined. But via Poincare duality all divisors can be

turned into the corresponding forms, so in that case intersection means the integral over

all involved divisors considered as forms.

One uses the toric diagram to obtain the intersection numbers. But before one can

do so, one has to specify the relative position of all divisors. This is done by triangulating

the toric diagram, i.e. by connecting all divisors in the toric diagram with lines in such

a way that no lines cross and that no further lines could be added without crossing one

another. For C
2/ZN and some three dimensional orbifolds this is unambiguous. However,

in general there are several triangulations possible for higher dimensional orbifolds. Since

the toric diagrams of C
2/ZN orbifolds are just lines, the triangulations of C

2/Z2 and C
2/Z3

are already shown in figure 5a and figure 5b, respectively. For C
3/Z6–II one obtains five

different triangulations shown in figure 6.

The intersection numbers of distinct divisors can be read off from the toric diagram.

For two dimensional orbifolds the intersection number of two adjacent divisors is 1, while

the intersection number of two divisors separated by a third one is 0. Similarly, for three

dimensional orbifolds the intersection of three distinct divisors is 1 if they lie on the corners

of a basic triangle of the triangulation and 0 if they do not.

The first triangulation of C
3/Z6–II for example gives as the only non-vanishing inter-
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section numbers with three distinct divisors

D1E1E4 = 1 , E1E2E4 = 1 , D2E1E2 = 1 , D2D3E1 = 1 , D3E1E3 = 1 , D1E1E3 = 1.

(3.7)

All other intersection numbers, in particular those containing self-intersections, can be

obtained from the intersection of distinct divisors and the linear equivalence relations. For

the same example (triangulation i) of C
3/Z6–II) we find:

6D1 + E1 + 2E2 + 3E3 + 4E4 ∼ 0 | · D1E4

3D2 + E1 + 2E2 + E4 ∼ 0 | · D1E4
⇒ 6D2

1E4 + 1 + 4D1E
2
4 ∼ 0

1 + D1E
2
4 ∼ 0

(3.8)

implying that D2
1E4 = 1/2 and D1E

2
4 = −1. In a similar way all other self-intersection

numbers can be calculated. Therefore we have obtained all the local information that we

need and can go on to the gluing procedure.

3.2 Gluing together the local resolutions

We consider now, how to bring the local information we obtained in the previous section

together in order to characterize the properties of the compact orbifold T 6/Z6–II. In our

description of this gluing process we follow closely [30].

First we determine the total number of divisors of the compact resolution, starting

with the ordinary divisors. In the non-compact case one has three ordinary divisors D1,

D2 and D3 for each fixed point of a three dimensional orbifold and two for each two

dimensional one. From our local information we would expect 12 × 3 + 6 × 2 + 8× 2 = 64

ordinary divisors in the compact case. But one has to be careful in order not to overcount.

Every ordinary divisor corresponds to one coordinate of a fixed point. Fixed points which

have the same location in one coordinate will thus have the same ordinary divisor for this

coordinate. Hence for finding the right number of ordinary divisors one has to count the

different locations of fixed points on the tori. As one can see from figure 2– 4 there are six

different locations of fixed points on the first torus (α = 1, . . . , 6), three different locations

on the second torus (β = 1, 2, 3) and four different locations on the last one (γ = 1, . . . , 4).

The corresponding ordinary divisors are denoted by

D̃1,α , α = 1, . . . , 6 ; D̃2,β , β = 1, 2, 3 ; D̃3,γ , γ = 1, . . . , 4 . (3.9)

But these are divisors on the cover of the orbifold which in particular means that the

divisors with α = 3, 5 and α = 2, 4, 6 are mapped into each other. In order to obtain

invariant objects on the orbifold one has to build invariant combinations out of them.

They are given in the first column of table 3. After this analysis we conclude that there

are ten ordinary divisors for T 6/Z6–II.

Now, we turn to the number of exceptional divisors. Since we know from the previous

section that we get four exceptional divisors for every local C
3/Z6–II orbifold, two for every

C
2/Z3 and one for every C

2/Z2 and since we know which fixed objects belong to which

local orbifold, we would expect to get 12×4+9×2+16×1 = 82 exceptional divisors. But

again one is overcounting in this simple estimate. To see what is going wrong one has to
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ordinary divisors exceptional divisors

D1,1 = D̃1,1 E1,βγ = Ẽ1,1βγ

D1,2 = D̃1,2 + D̃1,4 + D̃1,6 E2,1β = Ẽ2,1β

D1,3 = D̃1,3 + D̃1,5 E3,1γ = Ẽ3,1γ

D2,β = D̃2,β E4,1β = Ẽ4,1β

D3,γ = D̃3,γ E2,3β = Ẽ2,3β + Ẽ2,5β

E4,3β = Ẽ4,3β + Ẽ4,5β

E3,2γ = Ẽ3,2γ + Ẽ3,4γ + Ẽ3,6γ

Table 3. Ordinary and exceptional divisors of T 6/Z6–II. β runs from 1 to 3, γ from 1 to 4.

consider the twisted sectors separately. From (3.4) we know that there is one exceptional

divisor Ek of C
3/Z6–II per sector θk (k = 1, . . . , 4). For the compact case, we denote them

in general by Ẽk,αβγ . Since we have twelve fixed points of Z6–II in the first sector, we obtain

twelve divisors Ẽ1,1 βγ . In the other sectors, only the fixed lines with α = 1 are fixed under

the Z6–II action. Hence we obtain the divisors Ẽ2,1 β, Ẽ3,1 γ and Ẽ4,1 β (the missing label β

or γ is due to the fact that labeling in the invariant tori is not possible). Note that for a

particular choice of β and γ one obtains exactly four exceptional divisors for each C
3/Z6–II

singularity, as expected from the local analysis. Next, we consider the exceptional divisors

from C
2/Z3. The Z3 action is only present in the θ2 and θ4 sectors. Since the fixed lines

with α = 1 have already been taken into account there remain only those with α = 3 or

5: Ẽ2,3 β , Ẽ2,5 β, Ẽ4,3 β and Ẽ4,5 β. After building invariant linear combinations, this gives

for a specific choice of α and β the two exceptional divisors of the C
2/Z3 singularity. A

similar analysis gives the divisors Ẽ3,2 γ , Ẽ3,4 γ and Ẽ3,6 γ as the ones belonging to C
2/Z2.

As in the case of the ordinary divisors one has to build combinations of the tilded divisors

that are invariant under the orbifold action. These are also shown in table 3.

From this examination we see that we have twelve C
3/Z6–II singularities, giving twelve

exceptional divisors from the first sector, three from the second, three from the fourth and

four from the third (22 divisors in total). Furthermore, we obtain three C
2/Z3 singularities

giving six exceptional divisors and four C
2/Z2 ones giving four divisors. So we see that the

total number of exceptional divisors is 32. The identification of the exceptional divisors of

fixed lines with the exceptional divisors corresponding to higher twisted sectors of C
3/Z6–II

is the first step of gluing together the non-compact orbifolds. Such an identification takes

place each time a fixed point is contained in a fixed torus.

The next step in the gluing procedure is to include explicit information of the

six-dimensional torus. On the torus a basis of (1, 1)-forms is given by dzidzj, where

a wedge product is understood. Under an orbifold twist this object transforms like

exp [2πi (ϕi − ϕj)]. In the T 6/Z6–II case these forms are only invariant and hence well de-

fined on the orbifold if i = j. We define the divisors Ri to be the cycles dual to dzidzi. These

divisors are called “inherited” divisors because they descend from the torus to the orbifold.

Since the forms are well defined on the whole manifold, the R’s are also well defined.

On the orbifold there is an equivalence relation between ordinary divisors Di and
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inherited divisors Ri (see e.g. [30]): Ri ∼ NiDi,δ, where Ni is the order of the group in

the i-th torus and δ is the corresponding label for this torus (either α, β or γ). From

these relations one can obtain the linear equivalence relations on the resolved orbifold by

including the relations of the non-compact cases. In order to achieve this, one has to specify

one ordinary divisor Di,δ, find all local resolutions involving this divisor, and sum the E-

part of the associated local equivalence relations. To see how this works in detail we will

give the procedure explicitly for D2,1 and D1,3 and state thereafter all relations for T 6/Z6–II.

D2,1 belongs locally to the four C
3/Z6–II orbifolds with β = 1 and also to one C

2/Z3

orbifold (again with β = 1). Since N2 = 3, one obtains from (3.6)

R2 ∼ 3D2,1 +

4∑

γ=1

E1,1γ +
∑

α=1,3

(2E2,α 1 + E4,α 1) . (3.10)

Note that the sum over γ is taken over E1 only since it is the only divisor involved that

depends on γ.

D1,3 locally belongs to the three C
2/Z3 orbifolds only. A further subtlety arises here

since D1,3 is the sum of D̃1,3 and D̃1,5 (table 3). In such a case one has to divide the group

order by the number of elements the divisor is built of. Since N1 = 6 and D1,3 is built out

of two elements, one obtains R1 ∼ 3D1,3 +
∑

β(E2,3 β + 2E4,3 β). Proceeding in this way

it is possible to obtain all linear equivalence relations for the resolution of T 6/Z6–II

R1 ∼ 6D1,1 +

3∑

β=1

4∑

γ=1

E1,βγ +

3∑

β=1

(2E2,1 β + 4E4,1 β) + 3

4∑

γ=1

E3,1 γ ,

R1 ∼ 2D1,2 +

4∑

γ=1

E3,2 γ , R1 ∼ 3D1,3 +

3∑

β=1

(E2,3 β + 2E4,3 β) , (3.11)

R2 ∼ 3D2,β +

4∑

γ=1

E1,βγ +
∑

α=1,3

(2E2,αβ + E4,αβ) , β = 1, 2, 3 ,

R3 ∼ 2D3,γ +

3∑

β=1

E1,βγ +
∑

α=1,2

E3,αγ , γ = 1, 2, 3, 4 .

These relations can be seen as the outcome of the gluing procedure since on the one hand

we combined several local equivalence relations into one relation and on the other hand

they are related to the inherited divisors, which represent the global properties of the torus.

Furthermore, if one specifies one fixed point (i.e. α, β, and γ) and sets all divisors with

different labels to zero, one obtains exactly the local equivalence relation associated with

that fixed point. This can be seen as a cross check that the gluing procedure respects the

properties of the local resolutions. Finally (3.11) does not depend on the triangulation of

the C
3/Z6–II orbifolds, which will play a role when we consider the intersection numbers of

the resolution of T 6/Z6–II.

As in section 3.1, after having obtained the linear equivalence relations, we turn to

the intersection properties of the compact orbifold. Again, we use information of the local

resolutions together with the globally defined inherited divisors Ri to obtain the intersection

– 20 –



J
H
E
P
0
3
(
2
0
0
9
)
0
0
5

ring. A very useful method introduced in [30] is to construct an auxiliary polyhedron for

every local non-compact orbifold one has to consider. This is done in accordance with the

following rules:

1. Take a lattice N ∼= Z
3 with basis fi = miei, ei being the standard basis vectors and

mi > 0 such that m1m2m3 = N1N2N3/ |G|, where Ni is the order of the action of

the orbifold group G on the i-th coordinate-plane and |G| is the number of elements

of G.

2. Rotate and rescale the toric diagram of C
3/G in such a way that the divisors Di

correspond to vectors vi+3 = Nifi. The position of the E’s has to be transformed

accordingly.

3. Add vertices at vi = −fi for every inherited divisor Ri.

4. For every strict subgroup H ⊂ G with action C
2/H take a second polyhedron which is

identical to the original one except that all exceptional divisors which do not appear

in C
2/H are removed. Differently stated, if zi is invariant, only divisors opposite to

Di are not removed.

5. Take one polyhedron for each local resolution in such a way that the triangulated

toric diagram on which the polyhedron is based is the same as the one used for the

resolution, and label D’s and E’s of the polyhedron accordingly.

6. For divisors Di being the sum of qi tilded divisors, divide the i-th component of every

vector vk (k ≥ 4) by qi.

7. Take a star triangulation of every polyhedron (i.e. every simplex is spanned by

〈0, vi, vj , vk〉) in such a way that the triangulation of the toric diagram is conserved.

For T 6/Z6–II, the resulting polyhedra are shown in figure 3.2. There are twelve C
3/Z6–II

polyhedra, three C
2/Z3 polyhedra, and four C

2/Z2 polyhedra according to the local reso-

lutions that are part of the resolution of T 6/Z6–II.

The polyhedra of the C
3/Z6–II-type can have five different triangulations since locally

every fixed point can be resolved with a different triangulation. As the triangulation

of every such polyhedron is important for the intersection numbers of T 6/Z6–II, these

numbers depend on the triangulations chosen for the separate resolutions. Since our later

calculations rely strongly on the intersection numbers they also depend on the chosen

triangulations.

After having constructed the polyhedra, the intersection numbers of three distinct

divisors can be determined by the following rules. If the three divisors do not span a simplex

of a polyhedron, the intersection number is zero. In particular every intersection number

containing two divisors which are connected by a line running through the polyhedron

is zero. Intersection numbers involving two divisors that are separated by a third one

also become zero. And most important: all intersections of divisors belonging to different
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(a) The polyhedron for C
3/Z6–II

(α = 1) for triangulation i).

Each of the twelve possible poly-

hedra can have a different trian-

gulation.

(b) The polyhedron for C
2/Z3

(α = 3). There are three polyhe-

dra of this type. They all have the

same triangulation.

(c) The polyhedron for C
2/Z2

(α = 2). There are four polyhe-

dra of this type. They all have

the same triangulation.

Figure 7. The auxiliary polyhedra for T 6/Z6–II.

polyhedra are zero. Divisors that span a simplex of the triangulation have the intersection

ABC =
N

|det (v (A) , v (B) , v (C))| , (3.12)

with v (Y ) being the vector representing the divisors Y in the polyhedron and N a normal-

ization constant. This constant has to be chosen such that the intersection numbers of three

distinct divisors containing no R are the same as in the non-compact case. This ensures

that the local intersection properties of the local resolutions remain unchanged. Employing

these rules, one obtains all intersections containing three distinct divisors. These intersec-

tion numbers are completely determined by the properties of the local resolution. All

self-intersections can be calculated from those by multiplying the linear equivalence re-

lations (3.11) by all combinations of divisors, applying the above rules, and solving the

system of linear equations. In this way it is possible to obtain all intersection numbers for

all combinations of triangulations.

3.3 Resolution overview (triangulation independent)

We give an overview of some properties of the resolved orbifold T 6/Z6–II (which is denoted

by X = Res(T 6/Z6–II)), that do not depend on the chosen triangulations. As one can

see from the linear equivalence relations (3.11), all ordinary divisors can be expressed

completely in terms of inherited and exceptional divisors. Furthermore, these divisors can

be shown to be independent. Since they are (1, 1)-forms on the resolved orbifold it is

possible to view R’s and E’s as a basis of the cohomology group H1,1. Therefore, the

number of divisors gives us the dimension h1,1 = 35 of H1,1. It is possible to split H1,1

into a part coming from the untwisted sector of the orbifold and a part coming from the

twisted sector, since R’s and E’s correspond to untwisted and twisted sectors, respectively.
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To find the bases of the other cohomology groups Hp,q with p + q ≤ 3 and p ≥ q

(all others are connected to those by Poincare duality and the symmetry of the Hodge

numbers in p and q, see e.g. [42]) we start by defining (1, 0)-forms η1, η2, η3, corresponding

to dz1, dz2, dz3 in the orbifold limit. These forms transform under a Z6–II twist θ like

θ(η1, η2, η3) = (e2πi/6η1, e
2πi/3η2, e

−2πi/2η3) = (eπi/3η1, e
2πi/3η2,−η3), (3.13)

i.e. they are not invariant forms. But it is possible to construct invariant forms from them.

Namely the holomorphic volume form ν = η1η2η3 and the (2, 1)-form ω0 = η1η2η3 (a

wedge product is understood here and in what follows). Of course, also the forms ηiηi are

invariant. But as noted in section 3.2 these forms just correspond to Ri’s. Like the R’s, ν

and ω0 correspond to the untwisted sector. Furthermore, there is also the trivial element

of H0,0.

If one tries to construct other invariant (p, q)-forms one notes that the only possibilities

left are (2, 1)-forms involving the twisted sector. To see how to construct them one has to

remember that in section 3.2 we built invariant combinations of tilded divisors (table 3),

since these tilded divisors are mapped into each other. However, together with the ηi one

can now construct ten further invariant (2, 1)-forms

ω2,β =
(
Ẽ2,3 β − Ẽ2,5 β

)
η3 , ω4,β =

(
Ẽ4,3 β − Ẽ4,5 β

)
η3 ,

ω3,γ =
(
Ẽ3,2 γ + e2πi/3Ẽ3,4 γ + e4πi/3Ẽ3,6 γ

)
η2 .

(3.14)

In this way we have constructed maps from (1, 0)-forms on the fixed tori to (2, 1)-forms on

the resolved orbifold. The existence of those maps was used in [30] to compute h2,1 of the

twisted sector. The results given there are consistent with ours. The same Hodge number

can also be obtained by using orbifold cohomology directly, which was defined in [46, 47].

Furthermore, the forms constructed in such a way correspond to linear combination of

states on the orbifold, given in (2.18), if one sets the phase γ equal to −1/2 for ω2,β and

ω4,β and equal to −1/3 for ω3,γ . Furthermore, one can calculate the inner products of

(2, 1)- and (1, 2)-forms, we list here the non-vanishing ones

∫

X
ω2,βω2,β = E2

2,3 βR3 = −4 ,

∫

X
ω4,βω4,β = E2

4,3 βR3 = −4 ,
∫

X
ω2,βω4,β = E2,3 βE4,3 βR3 = 2 ,

∫

X
ω3,γω3,γ = E2

3,2 γR2 = −6 ,

∫

X
ω0ω̄0 = −R1R2R3 = −6,

(3.15)

These (2,1)–forms are not orthogonal, but by a change of basis this can be achieved.

Since all other combinations of η’s and Ẽ’s are not invariant we have found a basis of
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the cohomology groups Hp,q of X. The Hodge diamond is

1

0 0

0 3 + 32 0

1 1 + 10 1 + 10 1

0 3 + 32 0

0 0

1

The entries are given in the form a + b where a is the contribution of the untwisted sector

and b the contributions of the twisted sectors.

From the hodge numbers it is then possible to obtain the Euler number of the manifold,

which is

χ(X) = 2(1 + 35 − (1 + 11)) = 48 . (3.16)

The numbers obtained in this way are consistent with the ones given in [48] (table 5;

case 7) for the orbifold case. We take this as a further successful crosscheck that the

resolving process is smooth and therefore topological quantities are not changed.

Chern classes

Further information that can be obtained independently of the triangulation are the Chern

classes of the resolved manifold X. First of all, all local resolutions are by construction

Calabi-Yau manifolds (see the discussion below (3.2)). Since our resolution does not change

topological quantities, we expect the compact orbifold to stay Calabi-Yau after the resolu-

tion. Therefore the first Chern class c1(X) vanishes. Secondly the third Chern class c3(X)

is the top Chern class for a three dimensional complex manifold. Therefore the integral of

c3(X) over the manifold equals the Euler number. Finally, it is possible to calculate the

integral of the second Chern class c2(X) over a divisor S by making use of the adjunction

formula [43] ∫

S
c2(X) = c2(X)S = χ(S) − S3 . (3.17)

Therefore, c2(X)S can be computed, if one knows the topology of S and the intersection

number S3. The topology of S depends on the orbifold under consideration and the divisor.

It can be found in [30]; the intersection number can be calculated using the tools from

section 3.2.

Although in this way we can obtain all information needed about the Chern classes,

it is useful to note that the same results can be obtained if one uses a slightly modified

splitting principle to calculate the total Chern class c(X). Since all divisors are associated

to complex line bundles a first guess for the total Chern class, motivated by toric geometry

in the non-compact case (see e.g. [44]), would be c(X) =
∏

all divisors

(1 + S). However, this
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does not give c1(X) = 0 and χ(X) = 48 as expected. We use5

c(X) =

10∏

J=1

32∏

r=1

(1 + DJ)(1 + Er)(1 − R1)(1 − R2)(1 − R3)
2 . (3.18)

This gives the expansion for the Chern classes

c1(X) =

10∑

J=1

DJ +

32∑

r=1

Er − R1 − R2 − 2R3 = 0 ,

c2(X) =
1

2!

∑

all divisors

(c1(X) − Si)Si = −1

2

∑

all divisors

S2
i , (3.19)

c3(X) =
1

3!

∑

all divisors

(c1(X) − Si − Sj)SiSj = −1

6

∑

all divisors

S2
i Sj + SiS

2
j .

If one now replaces all D’s via the relations (3.11) one obtains c1(X) = 0 (as indicated),

χ(X) = 48 and the right values for the integrals over c2(X). Using this we can express all

integrals over Chern classes as linear combinations of intersection numbers.

Kähler form J

Since we have a basis of (1, 1)-forms we can give the Kähler form (see for example [45, 49])

expanded in R’s and E’s

J =
3∑

i=1

aiRi −
32∑

r=1

brEr , (3.20)

where we have introduced a shorthand for sums involving all exceptional divisors by giving

them a multi-index r running from 1 to 32. For r = 1, . . . , 12 the sum runs over E1,βγ

(E1 = E1,1 1, E2 = E1,1 2, . . .). r = 13, . . . , r = 18 corresponds to E2,αβ , r = 19, . . . , r = 26

to E3,αγ , and r = 27, . . . , 32 to E4,αβ. The coefficients ai, br have to be chosen such that

the volumes of any compact curve, any divisor, and the manifold X are all positive. This

means that the following integrals have to be positive

Vol(C) =

∫

C
J , Vol(S) =

1

2!

∫

S
J2 , Vol(X) =

1

3!

∫

X
J3 . (3.21)

The restrictions on ai, br by the positivity of the volumes are only valid if the considered

manifold does not develop singularities and the geometry stays “classical” in this sense. It

has been shown in [50] that applying a so-called “algebraic” measure positive volumes and

areas on one Calabi-Yau manifold can become negative on Calabi-Yaus connected to the

former by blow down or blowup. In particular in the orbifold limit all br become −∞.

5The replacement Ri → −Ri is due to the fact that one is free to consider instead of the line bundle

over Ri the inverse line bundle, which results in an extra minus sign. Squaring the R3-term takes into

account that there are more degrees of freedom in the z3-plane, since the two cycles along e5 and e6 are

independent.
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3.4 Triangulation dependence of resolutions

In section 3.2 we have given a method to compute all intersection numbers for a given

triangulation. Here we want to examine the intersection numbers with regard to the tri-

angulation dependence they show. Since the linear equivalence relations are equal in all

cases, it is possible to extract intersection numbers from intersections containing only R’s

and E’s. Hence we only have to consider intersection numbers of inherited and excep-

tional divisors.6 Secondly, since we started our calculation of intersection numbers with

the construction of the auxiliary polyhedra, we can check in which points this construction

is equal for different triangulations and hence conclude where the similarities in the inter-

section properties lie. All the dependence on the triangulations comes from the C
3/Z6–II

polyhedra, since they are constructed from triangulation dependent toric diagrams. Still

there are intersection numbers which are independent of the triangulation, namely the ones

containing at least one inherited divisor Ri. This comes from the fact that they can only

be connected by lines with those exceptional divisors that sit on the boundary of the toric

diagram. Therefore they do not “see” the triangulation, which is an effect of the interior of

the toric diagram. So the only intersection numbers that are truly triangulation dependent

are those consisting of E’s only.

This raises the question of how strong the dependence is, or differently stated: Do the

intersection numbers depend on just one triangulation of a certain fixed point, or is there

information transferred, connecting several fixed points? To clarify this question, let us

first consider intersections involving a certain E1,βγ . Since this divisor lies locally on the

position of the fixed point (α = 1, β, γ), its intersections are completely determined by the

triangulation chosen for that fixed point. The same is true whenever β and γ are specified

in an intersection number (e.g. in E2
2,1 βE3,1 γ).

Therefore the only intersection numbers depending on more than one triangulation are

those containing divisors that specify only β or γ (Ea,1 βE2
b,1 β , with a, b ∈ {2, 4} and E3

3,1 γ).

The intersection number containing only β depend on the triangulation of all fixed points

with this β. Analogously the ones specifying only γ depend on all fixed points with that γ.

This brings some structure in the triangulation dependence of the intersection numbers.

Furthermore, we want to give a description of the compact curves lying in the resolved

manifold. There are some curves occurring in all triangulations, while the existence of

others is triangulation dependent. Since our manifold is compact, the intersection of two

divisors (if it exists) is a compact curve (since the divisors are hypersurfaces of complex

dimension two, the intersection of two gives a hypersurface of complex dimension one, i.e.

a curve). It is possible to read off from the auxiliary polyhedra which divisors can intersect

and which cannot, namely all divisors that are connected by a line in a given triangulation

intersect. Therefore, one can identify the lines of an auxiliary polyhedron with compact

curves of the manifold. After this consideration it is obvious that the only triangulation

dependent compact curves are those represented by lines of the toric diagram of C
3/Z6–II.

6If the linear equivalence relations would not be the same for every triangulation, it would still be

possible to express all intersections in terms of intersections just involving R’s and E’s. But in this case

those numbers would no longer be comparable.
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R1R2 R1R3 R2R3 R1D2,β R1D3,γ R2D1,1 R2D3,γ R3D1,1

R3D2,β R2E3,1 γ R3E2,1 β R3E4,1 β D2,βD3,γ D2,βE2,1 β E2,1 βE4,1 β D1,1E4,1 β

D1,1E3,1 γ D3,γE3,1 γ D1,3E4,3 β E2,3 βE4,3 β D2,βE2,3 β D2,βD3,γ D1,3D3,γ R3E4,3 β

R3E2,3 β D3,γE4,3 β D3,γE2,3 β D1,3D2,β D2,βD3,γ D3,γE3,2 γ D1,3E3,2 γ R2E3,2 γ

D2,βE3,2 γ

Table 4. The compact curves of Res
(
T 6/Z6–II

)
existing in all triangulations.

triangulation additional compact curves

i) D1,1E1,βγ E1,βγE4,1 β E1,βγE2,1 β D2,βE1,βγ D3,γE1,βγ E1,βγE3,1 γ

ii) E3,1 γE4,1 β E1,βγE4,1 β E1,βγE2,1 β D2,βE1,βγ D3,γE1,βγ E1,βγE3,1 γ

iii) E3,1 γE4,1 β E2,1 βE3,1 γ E1,βγE2,1 β D2,βE1,βγ D3,γE1,βγ E1,βγE3,1 γ

iv) E3,1 γE4,1 β E2,1 βE3,1 γ D2,βE3,1 γ D2,βE1,βγ D3,γE1,βγ E1,βγE3,1 γ

v) E3,1 γE4,1 β E1,βγE4,1 β E1,βγE2,1 β D2,βE1,βγ D3,γE1,βγ D3,γE4,1 β

Table 5. The compact curves of Res
(
T 6/Z6–II

)
that exist only for a certain triangulation.

R1R2R3 = 6 , R2E
2
3,1 γ = −2 , R2E

2
3,2 γ = −6 , R3E

2

2,1 β = −2 ,

R3E
2

2,3 β = −4 , R3E
2

4,1 β = −2 , R3E
2

4,3 β = −4 , R3E2,1 βE4,1 β = 1 ,

R3E2,3 βE4,3 β = 2 .

Table 6. The triangulation independent intersections of Res
(
T 6/Z6–II

)
. Intersection numbers not

listed involving E’s with α 6= 1 or R’s are zero.

E3

1,βγ = 6 , E3

2,1 β = 8 , E3
3,1 γ = 8 , E3

4,1 β = 8 ,

E1,βγE2

2,1 β = −2 , E1,βγE2
3,1 γ = −2 , E1,βγE2

4,1 β = −2 , E1,βγE2,1 βE4,1 β = 1 ,

E2

2,1 βE4,1 β = −2 .

Table 7. The intersection numbers for the case that all fixed points have triangulation i). Only

divisors with α = 1 are involved; all other intersections are zero.

All other curves are triangulation independent. The curves existing in all triangulations

are given in table 4; table 5 gives the curves existing only for certain triangulations.

3.5 Examples of T 6/Z6–II resolutions

Here we give some illuminations of the results of the previous subsections. The triangulation

independent intersection numbers are given in table 6. All intersections involving E’s with

α 6= 1 and R’s that are not listed are zero. All other intersection numbers depend on the

triangulation. The remaining non-zero intersection numbers for the case that all C3/Z6–II

fixed points are resolved according to triangulation i) are listed in table 7.
Using this set of intersection numbers one can calculate some further interesting quan-

tities. First of all we want to give the results for the second Chern class integrated over
divisors. Using the expansion of the total Chern class to second order (3.19) and the
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information from table 6, one obtains for the second Chern class

c2(X) =−
∑

β,γ

[
25

36
E2

1,βγ +
5

18
E1,βγE2,1 β+

1

3
E1,βγE3,1 γ +

2

9
E1,βγE4,1 β +

1

6
E2,1 βE3,1 γ +

1

3
E3,1 γE4,1 β

]

−
∑

β

[
7

9
(E2

2,1 β + E2

2,3 β + E2

4,1 β + E2

4,3 β) +
4

9
(E2,1 βE4,1 β + E2,3 βE4,3 β)

]
(3.22)

−
∑

γ

[
3

4
(E2

3,1 γ + E2

3,2 γ)

]
.

This can now be easily integrated using
∫
S c2(X) = c2(X)S to give

c2(X)E1,βγ = 0 , c2(X)E2,1 β = −4 , c2(X)E3,1 γ = −4 , c2(X)E4,1 β = −4 ,

c2(X)E2,3 β = 0 , c2(X)E3,2 γ = 0 , c2(X)E4,3 β = 0 ,

c2(X)R1 = 0 , c2(X)R2 = 24 , c2(X)R3 = 24 .

(3.23)

The first line of (3.23) is triangulation dependent, whereas the other results hold for all

triangulations.

Finally, we derive the restrictions on the expansion coefficients ai, br of the Kähler

form J defined in (3.20) by using the integrals of the Kähler form given in (3.21). Taking

the integral over all curves in any triangulation, we get as a result that all ai and br are

larger than zero for all triangulations. Furthermore, only if an exceptional divisor E gets

a volume larger than zero, the fixed point corresponding to this divisor gets a finite size.

Therefore the corresponding integral has to be larger than zero. On the other hand since

the R’s are associated to the cycles of the torus, their volume should be larger than zero

in any case, unless one wants to shrink one complex dimension of the torus to zero. The

results of the integrals (3.21) are listed in appendix B.

3.6 Summary of the resolution procedure

We want to summarize the results obtained in the previous subsections. Using local resolu-

tions of fixed points and fixed lines and the globally defined divisors R, which are inherited

from the torus, we were able to construct resolutions of the T 6/Z6–II orbifold. These resolu-

tions are described by the linear equivalence relations (3.11), which are independent of the

triangulations chosen, and the intersection ring, which is highly triangulation dependent.

The knowledge of the intersection numbers is essential for our later computations since it

allows us to calculate integrals of quantities that can be expanded in terms of divisors,

such as the Chern classes, the gauge field strength and the Kähler form. Since the inter-

section numbers do depend on the chosen triangulation, in general every calculation that

we perform later is triangulation dependent.

This raises the question about how many different possibilities to resolve the orbifold

there are. A rough estimate would be 512 since there are five triangulations possible at

each of the twelve fixed points. But since there are permutation symmetries between

the fixed points, this number gets reduced to 1.797.090. This can be interpreted as a large

number of distinct Calabi-Yau manifolds or as phases of the same manifold produced by flop

transitions. A detailed description of how to obtain the number of different triangulations

will be given in appendix A.

– 28 –



J
H
E
P
0
3
(
2
0
0
9
)
0
0
5

4 Heterotic supergravity on resolutions

In the previous section we reviewed how one can determine the properties of resolutions of

compact orbifolds, the T 6/Z6–II in particular. We now use these topological characteriza-

tions of the resulting Calabi-Yau spaces, to describe compactifications of ten dimensional

heterotic E8×E8 supergravity to four dimensions. After we have described the gauge back-

grounds considered in this paper, we study consequences for the effective four dimensional

theory.

4.1 Abelian gauge flux

As the construction of stable vector bundles on Calabi-Yaus, like the orbifold resolutions

described previously, is an extremely difficult task, we focus our attention here on Abelian

gauge backgrounds only. Such gauge backgrounds need to fulfill various conditions: First

of all the gauge flux needs to be properly quantized: The gauge flux integrated over any

compact curve has to be equal to an E8×E8 lattice vector. Secondly, since the main ob-

jective of this paper is to compare compactifications on resolutions with those on heterotic

orbifolds, we need to indicate how to identify the orbifold gauge shift and Wilson lines with

these fluxes. Thirdly, the gauge background has to be chosen such that stringent consis-

tency requirements imposed by the Bianchi identity are fulfilled. Finally, apart from these

strict topological conditions, the gauge background has to be a solution to the Hermitian

Yang-Mills equation. In the following we investigate the consequences of the topological

conditions in detail, postponing the “metric” requirements of the Hermitian Yang-Mills

equation to subsection 4.4.

We consider Abelian gauge backgrounds, therefore we can choose a Cartan basis in the

E8×E8 gauge group, with generators HI , in which we expand the field strength two-form

F . (If we want to distinguish the Cartan algebra generators of the first and second E8,

we denote them by H ′
I and H ′′

I , respectively. Similarly we write F = F ′ + F ′′, where

F ′ lies in the first E8 and F ′′ in the second.) Since the Hermitian Yang-Mills equation

requires the gauge flux to be a (1, 1)-form, we can expand it in terms of divisors. In

subsection 3.3 we saw that resolutions of T 6/Z6–II have three inherited divisors Ri and 32

exceptional divisors Er, hence in principle we can expand the gauge flux in all of them. In

the completely blow down limit we should recover the situation of the heterotic orbifold

theory back. On the orbifold we have only allowed for gauge shifts and Wilson lines that

correspond to non-trivial boundary conditions around orbifold fixed points and fixed lines,

but not to magnetized tori. As this means that the gauge field strength vanishes everywhere

on the orbifold except for the singularities, we assume that the gauge flux is supported at

the exceptional divisors only:

F
2π

= Er Vr
I HI = Er

(
V ′I

r H ′
I + V ′′I

r H ′′
I

)
, (4.1)

since they lie inside the singularities in the orbifold limit. The set of 32 vectors Vr encodes

how the gauge flux is embedded into the E8×E8 gauge group. The bundle vectors in the first

or the second E8 are denoted by V ′
r and V ′′

r , respectively, hence collectively Vr = (V ′
r ;V

′′
r ).
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These vectors are severely restricted by the requirement that the gauge flux F can be

identified with the gauge shift V and the Z3 and Z2 Wilson lines W3 and W2, respectively.

(We consider only two Wilson line models for simplicity.) In order to identify the heterotic

orbifold data with the characterization of the bundle one first considers the fixed points

and fixed lines with the associated local orbifold gauge shifts individually, as defined in

subsection 2.2. As was used repeatedly in the previous section, such singularities separately

have non-compact resolutions. As was observed in [27] the identification between local

gauge shift and the local Abelian bundle flux is obtained on the resolutions by integrating

over an appropriately chosen non-compact curve built out of ordinary divisors.

Here we extend this methodology to the different singularities of compact orbifolds by

integrating over similar curves of ordinary divisors. For the Z6–II singularity this procedure

can only be applied to the curve of the divisors D2,βD3,γ , as this curve is not interrupted

by exceptional divisors in the projected toric diagram given in figure 6. The identification

therefore reads

V(θ,lβγ) ≡
∫

D2,βD3,γ

F
2π

∣∣∣
1βγ

= V1,βγ , (4.2)

where the gauge flux has been restricted to fixed points (α = 1, βγ). The local orbifold

shift vector V(θ,lβγ) is characterized by its space group element (θ, lβγ), where the lattice

shifts lβγ are given in the table below figure 2. Since the orbifold gauge shift and Wilson

lines themselves are only determined up to lattice vectors, the matching can also only be

performed up to them, as indicated by “≡”. In subsection 3.4 we emphasized that the

local properties of the Z6–II singularities are triangulation dependent. This ambiguity does

not affect the identification here, because it relies on the intersection D2D3E1 only which

is triangulation independent.

The other bundle vectors are supported on exceptional divisors of complex codimension

two singularities, hence the matching has to be performed in two complex dimensions. For

the Z3 singularities this then amounts to computing the integrals

V(θ2,lαβ) ≡
∫

D2,β

F
2π

∣∣∣
αβ

= V2,αβ , V(θ4,lαβ) ≡
∫

D1,3

F
2π

∣∣∣
αβ

= V4,αβ , (4.3)

according to figure 5b. Here the lattice shifts lαβ are defined in the table below figure 3.

The gauge flux has been restricted to the fixed line αβ by setting all other exceptional

divisors in F to zero. Since the orbifold action for the second and fourth twisted sector is

opposite, the identification on the orbifold requires that V(θ4,lαβ) ≡ −V(θ2,lαβ). The same

relations holds for the line bundle vectors V2,αβ and V4,αβ . Finally, for the Z2 fixed lines

the identification reads

V(θ3,lαγ) ≡
∫

D3,γ

F
2π

∣∣∣
αγ

= V3,αγ , (4.4)

see figure 5a, with lαγ summarized in the table below figure 4. This analysis identifies for

all 32 distinct fixed points and fixed lines the bundle vectors Vr with the local gauge shift

vectors Vg, given in (2.7), up to addition of lattice vectors.
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This identification is written out in terms of the gauge shift and the Wilson lines in the

following relations: On the exceptional divisors E1,βγ inside the Z6–II fixed points we have

V1,11 ≡ V1,13 ≡ V ,

V1,12 ≡ V1,14 ≡ V + W2 ,

V1,21 ≡ V1,23 ≡ V + W3 ,

V1,22 ≡ V1,24 ≡ V + W2 + W3 ,

V1,31 ≡ V1,33 ≡ V + 2W3 ,

V1,32 ≡ V1,34 ≡ V + W2 + 2W3 ,

(4.5)

for β = 1, 2, 3 and γ = 1, . . . , 4. On exceptional divisors E2,αβ and E4,αβ inside the Z3

singularities one obtains

V2,11 ≡ V2,31 ≡ 2V ,

V2,12 ≡ V2,32 ≡ 2V + 2W3 ,

V2,13 ≡ V2,33 ≡ 2V + W3 ,

V4,11 ≡ V4,31 ≡ − 2V ,

V4,12 ≡ V4,32 ≡ − 2V − 2W3 ,

V4,13 ≡ V4,33 ≡ − 2V − W3 ,

(4.6)

for α = 1, 3 and β = 1, 2, 3. Finally, inside the Z2 fixed lines on the exceptional divisors

E3,αγ the identification reads

V3,11 ≡ V3,13 ≡ V3,21 ≡ V3,23 ≡ 3V ,

V3,12 ≡ V3,14 ≡ V3,22 ≡ V3,24 ≡ 3V + W2 ,
(4.7)

for α = 1, 2 and γ = 1, . . . , 4. Once the bundle vectors Vr have been defined in this way,

the quantization conditions on all compact curves inside the resolution of T 6/Z6–II are

automatically fulfilled. As solving these quantization requirements is generically a difficult

exercise, the matching with the orbifold gauge shift and Wilson lines is advantageous.

The central consistency requirement of heterotic Calabi-Yau compactification is the

Bianchi identity

dH =
α′

4

(
trR2 − trF2

)
. (4.8)

Here the trace tr is normalized as the trace in the fundamental representation of SO-

groups. In the following we also encounter the trace Tr in the adjoint of an E8 group, and

traces tr in the fundamental of SU-groups. Since the gauge background F is Abelian, these

different definitions of the traces are related to each other

TrF2 = 30trF2 = 60 trF2 ; (4.9)

for higher powers similar identities exist (for gauge field strengths in the adjoint of E8×E8

only the trace Tr is defined, and these identities are then interpreted as formal definitions).

Since the left-hand-side of the Bianchi identity is exact, it vanishes when integrated over

any of the 35 independent compact divisors

∫

S

{
trF2 − trR2

}
= 0 , (4.10)
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with S = Ri and Er.

This results in only 24 Bianchi consistency conditions: 11 equations are trivially satis-

fied. They correspond to integrals over R1, E3,2γ and E2,3β, E4,3β , respectively. This can be

understood by considering which intersections are needed when integrating over one of these

divisors. In detail, the integral of the Bianchi identity over R1 only gives non-vanishing

contributions when terms proportional to R2R3 are present. Since by definition F2 does

not contain this combination and neither does the second Chern class c2(X) = −trR2/8π2,

given in (3.19), the integral over R1 vanishes identically. In the same spirit we note that

the only non-vanishing intersection involving E3,2γ is R2E
2
3,2γ (see table 6). As R2E3,2γ is

neither contained in F2 and c2(X), also the conditions obtained by integrating over E3,2γ

are identically zero. Using similar arguments, also the integrals of the Bianchi identity over

E2,3β and E4,3β vanish identically. Counting shows that there are in total 1+4+2×3 = 11

trivial equations.

Out of the 24 non-trivial Bianchi identities two are universal, while the others depend

on the local triangulation of the Z6–II resolutions. The two universal Bianchi conditions,

∑

γ

V 2
3,1γ + 3

∑

γ

V 2
3,2γ = 24 ,

∑

β

(V2,1β ;V4,1β) + 2
∑

β

(V2,3β ;V4,3β) = 24 , (4.11)

with (v;w) = v2 + w2 − v · w, are obtained by integrating over R2 and R3, respectively.

Note that neither condition involves the bundle vectors V1,βγ and they are the same as

the Bianchi identities on K3, that has gravitational instanton number 24. This can be

understood by noting that R2 and R3 have the topologies of the resolutions of K3 orbifolds

T 4/Z3 and T 4/Z2, respectively [51–53]. The Bianchi consistency conditions obtained by

integrating over E1,βγ only depend on the local triangulation of the resolution of the Z6–II

fixed point (α = 1, βγ). The resulting five possible forms of the local Bianchi identity are

listed in table 8. The other Bianchi consistency requirements depend on the triangulations

of different Z6–II resolutions simultaneously, therefore it becomes rather involved to indicate

all the possible expressions for them. In the latter part of this paper we will only give them

for very specific choices of triangulations.

This completes our description of the conditions on the Abelian bundle vectors Vr

to obtain a well defined resolution model. Before continuing investigating the resulting

physics, let us emphasize a few important issues: The matching of the bundle vectors

Vr with the orbifold gauge shift and Wilson lines is universal, whereas a large portion

of the Bianchi identities depend crucially on the local Z6–II triangulations chosen. For a

fixed choice of local triangulations, the Bianchi identities already constitute a complicated

system of 24 quadratic equations in 32 vectors Vr, each of which has 16 components. Given

that they are all determined up to addition of E8×E8 lattice vectors, finding a solution

means to solve 24 Diophantine equations with 512 unknowns, which is a formidable task.

Moreover, the different triangulations of the Z6–II resolutions lead to a large number of

(almost two million) compact Calabi-Yau manifolds, and for each of them we get such a

system of equations. Therefore solving the system of 24 Bianchi identities is a very difficult

task in general. We will solve this system for a specific case in section 5.
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Res Bianchi identity on E1,βγ

i) 3V 2
1,βγ = (V2,1β;V4,1β) + V 2

3,1γ

ii) 7V 2
1,βγ = 4 + 2 (V2,1β ;V4,1β) + (V3,1γ ;V4,1β) − 2V 2

4,1β + 2V1,βγ · (V3,1γ + V4,1β)

iii) 8V 2
1,βγ = 8 − 2V2,1β · V4,1β + 2V1,βγ · (V2,1β + V4,1β)

iv) 9V 2
1,βγ = 12 − V 2

3,1γ + 6V1,βγ · V3,1γ

v) 4V 2
1,βγ = 4 + (V2,1β;V4,1β) − V 2

4,1β + 2V1,βγ · V4,1β

Table 8. The Bianchi identity on the exceptional divisor E1,βγ at a Z6–II resolution of fixed point

(α = 1, βγ) depends on which triangulation has been employed.

4.2 Four dimensional spectrum and anomaly analysis

Given a resolution and a compatible set of 32 line bundle vectors the spectrum of the

resulting model can be computed. To do this we start from the anomaly polynomial of the

gaugino in ten dimensions, and integrate over the resolution. In this way we obtain the

multiplicity operator

N =

∫

X

{1

6

( F
2π

)3
− 1

24
tr
(R

2π

)2 F
2π

}
. (4.12)

By acting with this operator on the 496 states of the E8×E8 gaugino, one can determine

the number of times each of these states appears on the resolution. Since this operator is

defined as the integral over the whole compact resolution X, its expression depends on the

local triangulations.

The chiral spectrum computed using this multiplicity operator is free of non-Abelian

anomalies because the Bianchi identities are fulfilled on all compact divisors [54]. However,

Abelian and mixed anomalies do in general arise for Abelian gauge backgrounds [55–58],

which are canceled via four and six dimensional variants of the Green-Schwarz mecha-

nism [59–63]. Using the trace identities of E8

TrT 4 =
1

100

(
TrT 2

)2
, TrT 6 =

1

7200

(
TrT 2

)3
, (4.13)

the four dimensional anomaly polynomial can be written as [56]

2π I6 =
1

(2π)5

∫

X

{1

6

(
tr[F ′F ′]

)2
+

1

4

(
trF ′2 − 1

2
trR2

)
trF ′2 (4.14)

− 1

16

(
trF ′2 − 5

12
trR2

)
trR2

}
tr[F ′F ′] + (′→′′) .

Here F ′, F ′′ and R denote the four dimensional gauge field strengths for both E8 factors

and curvature, respectively.

This formula tells us that the pure U(1), the mixed U(1)-gravitational and the mixed

U(1)-non-Abelian anomalies cannot be all absent at the same time. This holds in partic-

ular for the hypercharge Y : The four dimensional gauge field strength in the observable
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sector F ′ = Y FY + . . . contains the hypercharge U(1) gauge field FY ; the dots denote

the SU(2)×SU(3) of the SM and other non-Abelian and U(1) factors. In order that all

anomalies involving the hypercharge U(1) are canceled, it is necessary that

tr[F ′Y ] = V ′
r · Y Er (4.15)

vanishes, i.e. that the hypercharge is perpendicular to all Abelian bundle vectors Vr. For

the blowup models of heterotic MSSMs in the ”mini-landscape” [21] under investigation

this is impossible, because one of the Wilson lines is responsible for breaking a certain

GUT group down to the Standard Model:7 Since the bundle vectors are constructed from

linear combinations of the gauge shift and Wilson lines, up to lattice vectors, some of

the inner products Y · Vr are non-zero. This is consistent with the general statement

that U(1)’s of type i according to the classification defined in [64, 65], i.e. those that lie

inside the structure group of the bundle, are broken. Generically there are then pure

hypercharge, mixed U(1)–hypercharge, mixed gravitational-hypercharge and non-Abelian-

hypercharge anomalies. Under certain circumstances it is possible that one of the latter

two is absent. This analysis therefore indicates that at first sight all U(1) symmetries,

including the hypercharge, are anomalous. The multitude of anomalous U(1)’s do not

render the compactification inconsistent because the Green-Schwarz mechanism is at work

to cancel these mixed anomalies.

4.3 Axions and twisted states

This motivates us to consider the Green-Schwarz mechanism in four dimensions. This will

lead us to investigate properties of axions and their reinterpretation as twisted states with

VEV’s that generate the blowup from the orbifold perspective. The starting point is the

bosonic part of the heterotic supergravity action in ten dimensions, given by

Shet =
1

2κ2
10

∫
d10x

√
− det g e−2φ

{
R + 4 |dφ|2 − 1

2
|H3|2 − α′

4
tr |F |2

}
, (4.16)

where in the conventions of [66] we have 2κ2
10 = (2π)7α′4 and F = dA + A2 is the E8×E8

gauge field strength of the gauge potential A and

H3 = dB2 +
α′

4
X3 , dX3 = X4 = trR2 − trF 2 . (4.17)

The Green-Schwarz mechanism in ten dimensions relies on the fact that the anomaly poly-

nomial factorizes I12 = X4X8, where

X8 =
1

4

(
trF ′2

)2
+

1

4

(
trF ′′2

)2
− 1

4
trF ′2

trF ′′2 (4.18)

− 1

8

(
trF ′2 + trF ′′2

)
trR2 +

1

8
trR4 +

1

32

(
trR2

)2
,

7There are models in [21] where the shift and all Wilson lines are orthogonal to the standard SU(5)

hypercharge generator, but then one of the Wilson lines breaks the SU(2) in blowup.
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so that the anomalies in ten dimensions can be canceled using the Green-Schwarz interac-

tion term

SGS =
1

48(2π)5α′

∫
B2X8 . (4.19)

Compactifying to four dimensions on a resolution of T 6/Z6–II, one expands the two-

form B2 in terms of the 35 harmonic (1,1)–forms corresponding to the inherited and ex-

ceptional divisors

B2 = b2 + 2πα′ (αi Ri + βr Er) . (4.20)

Here b2 is the two-form in four dimensions and the αi and βr are scalars. The normalization

of these scalars in (4.20) has been chosen such that, under Abelian gauge transformations

δAI = dλI with gauge parameter λI , the scalars βr transform as axions

δβr = V I
r λI , δαi = 0 , (4.21)

while the scalars αi are inert. This can be seen by realizing that H3 contains H3 ⊃
2πα′d4αiRi + 2πα′(d4βr − V I

r AI)Er with d4 the exterior derivative in four dimensions,

where we have used the freedom to choose X3 ⊃ −2trAF (see e.g. [67]).

Because we chose the compactification to preserve supersymmetry, all states have to

fall in supersymmetric multiplets. The scalars in the expansion of the B2, the scalars αi and

the axions βr form the scalar components of the multiplets Ti and Ur. These components

are defined by the expansion of the dimensionless complexified Kähler form

i
{B2 − b2

2πα′ + i J
}

= Ti|Ri + Ur|Er (4.22)

in terms of the ordinary and exceptional divisors. Explicitly their lowest components are

given by

Ti| = −ai + i αi , Ur| = br + i βr , (4.23)

where the | indicates setting all Grassmann coordinates θ, θ̄ to zero. The real parts are the

components of the Kähler form (3.20) in terms of the inherited divisors Ri and exceptional

divisors Er.

The axion states βr can be interpreted as twisted states from the heterotic orbifold

point of view: As was discussed in subsection 2.2 the T 6/Z6–II orbifold has four twisted

sectors: The first twisted sector contains genuine four dimensional states, while the second,

fourth and third twisted sectors defines fields in six dimensions. Similarly, the exceptional

divisors E1,βγ correspond to the codimension six singularities, and therefore the scalars

β1,βγ live in four dimensions. The states βr corresponding to the other exceptional divisors,

i.e. E2,αβ , E4,αβ and E3,αγ , all define six dimensional states, because they live on exceptional

divisors of codimension four singularities. However, for this interpretation to work in all

fine prints, also all the charges w.r.t. the 16 Cartan generators have to match. Since the

twisted states transform linearly under gauge transformations, while axions transform with

shifts, this identification does not directly work.
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Figure 8. The supergravity approximation uses “classical” geometry with positive volumes of

exceptional cycles, i.e. br > 0. Contrary, the CFT orbifold description is valid, when the VEV’s

of twisted states Ψr are much smaller than the string scale Ms. Because there br < 0 this is the

regime of “string” geometry.

A second place where there seems to be a mismatch between heterotic orbifold mod-

els and their blowup candidates is the following: Heterotic orbifold models have a single

universal axion, which is consistent with the observation [37] that such models have at

most a single anomalous U(1). On Calabi-Yaus there can be multiple anomalous U(1)’s

and many axions supported on their divisors [55, 56]. These two statements seem to be in

contradiction when one considers models on orbifolds in blowup. This paradox is resolved

by realizing that the blowup is generated by Higgsing, i.e. switching on VEVs for twisted

states, and results in localized model dependent axions [28, 68].

In the present case this mechanism sorts out these problems as well. As we just

noted, the states βr are localized on the exceptional divisors Er. The twisted states can be

thought of being localized precisely on the exceptional divisors in blowup. If we consider

the superfield redefinition

Ψr = Ms e2π Ur = Ms e2π(br+iβr) , δΨr = e2πi V I
r ΛI

Ψr , (4.24)

where Ms = 2/
√

α′ = 4π/ℓs is the string scale, we see that Ψr transforms linearly under

gauge transformations: In fact, this shows that Ψr is a definite twisted state from the

orbifold perspective: The identifications of the Abelian bundle vectors Vr and the orbifold

gauge shift and Wilson lines, see (4.5)–(4.7), is the same as the local orbifold shifts, Vg, up

to lattice vectors. The twisted states are identified by their shifted momenta psh = p + Vg,

see subsection 2.2. Putting these two ingredients together implies that each bundle vector

Vr defines a shifted momentum and therefore each superfield Ψr corresponds to a definite

twisted state.

Taking this identification seriously has some striking consequences: From the orbifold

perspective the blow down would correspond to having vanishing VEV for the twisted

state Ψr. According to (4.24) this limit is obtained by taking br → −∞: The areas of

some curves actually become negative! This astonishing result, telling us that we enter

the “string” geometry regime, was discussed in [50]. There it was argued that the volumes

of exceptional divisors defined by the “algebraic” measure tend to −∞ in the blow down
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limit. We see that the expectation value of the twisted states precisely corresponds to this

measure. The situation is schematically depicted in figure 8. In [50] another measure, called

the “σ-model” measure, was defined. Using this measure the volume of exceptional divisors

approaches zero in the orbifold limit as one intuitively would expect. But to construct this

measure explicitly is much more involved, and not pursued in this work.

The identification (4.24) also has phenomenological consequences in particular for the

hypercharge symmetry of heterotic orbifold models in full blowup. A survey of the spectra

of these models reveals that all heterotic MSSM orbifolds have at least one fixed point

with all twisted states there charged under the Standard Model. Since going to full blowup

corresponds to giving VEV’s to at least one twisted state per fixed point or fixed line,

always some of its gauge symmetries get broken. Moreover, if one wants to derive the

resulting model from a supergravity approach, according to (4.24) all these VEV’s need to

be large: at least of the string scale. One could choose these VEV’s carefully such that

the SU(2)×SU(3) remains unbroken, but then necessarily the hypercharge is lost. This is

in accordance with the anomaly analysis of the previous subsection 4.2, where we found

that the hypercharge U(1) generically suffers from pure and mixed anomalies. We conclude

that when all fixed points have been blown up the MSSM is necessarily broken in all of the

heterotic MSSM orbifolds considered in [21, 22].

4.4 Effective Kähler potential in four dimensions

In the previous subsection we identified the four and six dimensional axions that are crucial

in the anomaly cancelation. Because of supersymmetry the structure of the four dimen-

sional low energy action up to second order in the derivatives can be encoded by three

functions: the gauge kinetic function, the superpotential and the Kähler potential. For our

purposes the Kähler potential is the main object of interest.

In the previous subsection we already identified the chiral multiplets Ti and Ur that

arose from the expansion of the anti-symmetric tensor field B2 and the Kähler form J . Let

G denote the Hermitian metric on the internal six dimensional resolution X, and ∗4 is the

Hodge-dualization in four dimensions. The integrals over X are distinguished from those

in four dimensions by a subscript X under the integral for the former. The volume of the

resolution X is obtained as

Vol(X) =

∫

X
d6z det G = l6s

∫

X

1

6
J3 , (4.25)

where in the last equal sign we have used that the Kähler form J is defined to be dimen-

sionless and ℓ2
s = (2π)2α′ sets the string length. From the kinetic term and the theta-term

of the gauge field in four dimensions,
∫

d4xd4θ S trW αWα + h.c. ⊃ − 1

4

∫
Re S trF ∗4 F − 1

4

∫
Im S trF 2 , (4.26)

we can identify the dilaton multiplet S with scalar component

S| =
1

2π

(Vol(X)

e2φℓ6
s

− i β0

)
, (4.27)
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as follows: This multiplet contains the universal axion β0, that is obtained from dualizing

the anti-symmetric tensor b2 via

Vol(X) ∗4 d4b2 = e2φℓ6
s d4β0 , (4.28)

where the dilaton takes its constant VEV. To determine the transformation of this axion,

start from parts of the action of b2 given by

S(b2) ⊃ − 1

4κ2
10

∫
d4b2 ∗ d4b2

∫

X
d6z e−2φ detG (4.29)

− 1

8α′(2π)2

∫
d4b2 A′

I

1

(2π)2

∫

X

(
trF ′2 − 1

2
trR2

)
ErV

′I
r + (′→′′).

Here we have used that X2,6 = 6
(
trF ′2 − 1

2trR2
)
tr(F ′F ′) + (′→′′), is the expansion of X8

to first order in four dimensional gauge fields. This can be rewritten in terms of the axion

β0 as

S(β0) ⊃ 1

4πα′

∫
e2φℓ6

s

Vol(X)

{
d4β0 ∗4 d4β0 + 2 qI d4β0 ∗4 AI

}
− 1

8π

∫
β0

(
trR2 − trF 2

)
.

(4.30)

This axion and therefore the superfield S transforms under gauge transformations as δβ0 =

−qIλ
I = −q′I λI − q′′I λ

′′I with

q′I =
1

16π

∫

X

1

(2π)2

(
trF ′2 − 1

2
trR2

)
Er V ′I

r , (4.31)

and similarly for the second E8 i.e. ′ →′′.

When there are no anomalous U(1)’s present, like Calabi-Yau compactifications using

the standard embedding, the moduli Kähler potential is given by [69, 70]

K = − lnH − ln

∫

X

1

6
J 3 , (4.32)

with H = S + S̄ and J = Ri(Ti + T̄i) + Er(Ur + Ūr). However, as we have seen that

both the chiral superfields Ur and S have anomalous variations, these functions need to be

extended to gauge invariant combinations given by

H = S + S̄ − 1

2π
qIVI , J = Ri(Ti + T̄i) + Er

(
Ur + Ūr − V I

r VI
)
, (4.33)

where VI = (V ′I ,V ′′I) is the E8×E8 vector multiplet containing the gauge fields A′I and

A′′I . The Kähler potential K is thus a function of the moduli chiral multiplets and the

Abelian vector multiplets.

This fact was used in [56] to obtain the loop-corrected Donaldson-Uhlenbeck-Yau the-

orem [71, 72]. This integrated form of the Hermitian Yang-Mills equations is derived by

determining the part of the action proportional to the auxiliary fields DI of the Abelian
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vector multiplets. This amounts to expanding the Kähler potential to first order in V I

after which all Grassmann components are set to zero:

∫

X

1

2
J2 F

2π
= e2φ qIHI =

e2φ

16π

∫

X

1

(2π)3

(
trF ′2 − 1

2
trR2

)
F ′ + (′→′′) . (4.34)

In superspace the mass matrix for gauge fields is obtained by expanding the Kähler poten-

tial to second order in the vector multiplets, because
∫

d4θ V 2 ∼ AµAµ in Wess-Zumino

gauge. Hence we obtain the mass matrix for the gauge fields

M2
IJ =

1

4

( l6s
Vol(X)

)2{
e4φ qIqJ +

∫

X
J2ErV

I
r

∫

X
J2EsV

J
s − Vol(X)

l6s

∫

X
JErEsV

I
r V J

s

}
.

(4.35)

The first term arises from differentiating − lnH twice, the other two terms from differen-

tiating − ln
∫
X J 3/6. The fact that two terms arise here might be somewhat surprising,

but agrees with computing the mass directly from dimensional reducing the action (4.16)

to four dimensions: The reduced H3 ∗ H3 term contains F ∗6 F AµAµ. Using that on

Calabi-Yau spaces the dual of a two-form can be expressed by [69]

∗6F = −JF − 3

2

∫

X
J2F

/∫

X

1

6
J3 , (4.36)

we confirm that two mass structures should arise. The first and the second term in (4.35)

are equal, when the Hermitian Yang-Mills equation is fulfilled. The mass matrix given

above can be interpreted as the physical mass matrix provided that one takes into account

that the kinetic terms for the gauge fields are not canonically normalized.

However, both the Hermitian Yang-Mills equation (4.34) and the mass matrix (4.35)

are only valid in the supergravity regime. The reason is that the ten dimensional heterotic

supergravity action (4.16), from which these results are derived, is lowest order in α′,

up to some terms introduced for the purpose of anomaly cancelation. The full string

dynamics furnish a series of α′ corrections to this effective action. Therefore, in particular

the Hermitian Yang-Mills equations will receive such α′ corrections, and consequently the

notion of the stability of bundles may have to be reconsidered in this light. From the

effective four dimensional perspective, this does not only result in corrections to the Kähler

potential (4.32) and superpotential, but also in new higher derivative interactions in the

four dimensional supergravity theory. Moreover, at a certain order in α′ also some massive

string excitations become relevant. Only when the curvatures are small compared to the

string scale Ms the naive supergravity can be trusted.

Precisely when we want to consider the matching of the effective supergravity de-

scription on the Calabi-Yau resolution of T 6/Z6–II with the orbifold theory, we run out

of the regime of validity of supergravity. As we observed from (4.24) the orbifold limit

corresponds to taking the volume parameters br of the exceptional divisors to −∞. As

the classical Kähler cone requires that br ≥ 0, this means that area and volume integrals,

like
∫
X J3, take wrong signs, which results in sick behavior of, for example, the Hermitian

Yang-Mills equation (4.34) or the mass matrix (4.35). Presumably the higher order α′
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corrections will compensate for this disastrous behavior, but unfortunately we do not know

these supergravity improvements explicitly.

Approaching the matching from the orbifold side seems to become problematic as well.

At the orbifold point there is an exact CFT description available which is perfectly un-

der control (with the possible exception of the Fayet-Illiopoulos term due to the universal

anomalous U(1), see (2.22)). However, as soon as one wants to consider a full blowup of

the orbifold, one needs to allocate VEV’s to at least a single twisted state Ψr per fixed

point or fixed line. As long as these VEV’s are small compared to the string scale Ms, this

corresponds to small deviations from the exactly solvable CFT. But (4.24) tells us that in

order to match with positive values for br, where the supergravity approximation would

start to make some sense, the VEV’s of Ψr are at least of the order of the string scale. Even

though the convergence radius of the VEV’s of say the superpotential computed from orb-

ifold CFT’s is unknown (calculations like [73] attempt to get an insight into this), it would

likely be not much beyond the string scale. Therefore the matching of the supergravity on

smooth Calabi-Yau spaces and heterotic strings on orbifolds beyond the topological level,

is very difficult: The natural place for that seems to be when br ≈ 0, i.e. Ψr ≈ Ms, but in

fact there both approaches are less under control.

5 Resolution of a heterotic MSSM orbifold

In this section, we want to apply the results of the previous sections, i.e. we want to

compute and solve the integrated Bianchi identities for the 3-form field strength H given

in (4.10). For concreteness and simplicity we focus on the case where resolution i) is used

exclusively to resolve all 12 C
3/Z6–II fixed points. Subsequently, we describe a method

that can be employed for solving the Diophantine equations resulting from the Bianchi

identities. Thereafter we discuss the massless spectrum of our solution. At last we discuss

the identification of twisted orbifold states and line bundle vectors, which allows for another

way of finding a solution for the Bianchi identites.

5.1 The Bianchi identities with resolution i) for all fixed points

As stated in subsection 4.1, we obtain 24 non-trivial equations from integrating (4.10) over

the 35 possible divisors. The Bianchi identities resulting from integrating over E1,βγ depend

only on the local resolution of the fixed points. In addition, we obtain the two resolution

independent equations coming from an integration over the inherited divisors Ri. The

remaining 10 non-trivial equations result from integrating over E2,1β , E4,1β , and E3,1γ .

In contrast to the Bianchi identities for E1,βγ , these equations depend on a combination

of chosen resolutions. This is due to the fact that integrating over E3,1γ and E2,1β, E4,1β

leaves β and γ unspecified, respectively. As a consequence, there remains a sum over several

distinct fixed points coming from the expansion of the gauge flux and the second Chern

class, which in turn leads to the fact that these 10 equations depend on the combination

of resolutions at these distinct fixed points. In this example, however, we use resolution i)

only, so this complication will not concern us further here.
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The resolution-dependent Bianchi identities are computed as outlined in subsection 4.1.

The relevant intersection numbers were given in table 6 and table 7, and the integrals over

the second Chern class can be found in (3.23). Carrying out the integration for all 24

divisors yields the following set of non-trivial Bianchi identities:

∑

γ

V 2
3,1γ + 3

∑

γ

V 2
3,2γ = 24, (5.1a)

∑

β

(V2,1β;V4,1β) + 2
∑

β

(V2,3β;V4,3β) = 24, (5.1b)

3V 2
1,βγ − V 2

3,1γ − (V2,1β;V4,1β) = 0, (5.1c)

2V 2
3,1γ − V3,1γ ·

∑

β

V1,βγ = 2, (5.1d)

3V 2
2,1β + 4(V2,1β ;V4,1β) − 3V2,1β ·

∑

γ

V1,βγ = 12, (5.1e)

6V 2
4,1β + 2(V2,1β ;V4,1β) − 3V4,1β ·

∑

γ

V1,βγ = 12. (5.1f)

Equations (5.1a) and (5.1b) are the resolution independent Bianchi identities coming from

the integration over R2 and R3, i.e. equations (4.11). The twelve equations given in (5.1c)

are the ones coming from integrating over E1,βγ . The relevant data is given in the first

line of table 8. When integrating over E3,1γ , we obtain the four equations (5.1d). Finally,

the two times three equations (5.1e) and (5.1f) are obtained from integrating over E2,1β

and E4,1β, respectively. Having obtained these equations, one can in principle take the

bundle vector identifications given in (4.5)–(4.7) together with the data from (2.23) and

insert them into (5.1). However, in general none of the Bianchi identities will be solved

with this procedure. This is due to the fact that the 32 line bundle vectors are only defined

up to the addition of E8×E8 lattice vectors. One possibility to find a solution is to find a

set of appropriate lattice vectors that is added to the 32 line bundle vectors. As already

mentioned at the end of subsection 4.1, this leads to a system of 24 Diophantine equations

in 512 unknowns. In order to be able to solve this, it is convenient to simplify the set of

equations. How this can be done is illustrated in the next subsection. Another approach to

finding a solution to (5.1) is to start with twisted orbifold states and use the identification

between them and the line bundle vectors as discussed in subsection 4.3. This method is

exemplified in subsection 5.4, after we discussed the identification in more detail.

5.2 Solving the Bianchi identities

In this rather technical subsection we give a solving procedure for the Bianchi identities.

The physics of a Bianchi identity solution is discussed in the subsequent subsections 5.3

and 5.4.

In order to obtain a solution, we start with the identifications (4.5)–(4.7) for the 32

line bundle vectors. The SO(10) of the orbifold shift vector V is broken down to SU(5) by

the order three Wilson line W3. The order two Wilson line W2 further reduces the gauge

group to SU(3) × SU(2). From a phenomenological point of view it is desirable to keep the
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Vr expression for the bundle vector Vr

V1,11, V1,13 (− 1

6
0 0 − 1

2
− 1

2
− 1

2
− 1

2
− 1

2
) ( 0 1

3
0 0 0 0 0 0)

V1,12, V1,14 (− 5

12

1

4
− 3

4
− 1

4
− 1

4

1

4

1

4

1

4
) (− 1

2
− 1

6
0 0 0 0 0 0)

V1,21, V1,23 (− 1

6
0 2

3

1

6

1

6

1

6

1

6

1

6
) ( 1

3
− 2

3
− 1

3
− 1

3
0 0 0 0)

V1,22, V1,24 ( 1

12
− 1

4

5

12
− 1

12
− 1

12

5

12

5

12

5

12
) (− 1

6
− 1

6
− 1

3

2

3
0 0 0 0)

V1,31, V1,33 (− 1

6
0 1

3
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
) ( 1

6
− 1

6
− 1

6
− 1

6

1

2

1

2

1

2

1

2
)

V1,32, V1,34 ( 1

12
− 1

4

1

12
− 5

12
− 5

12

1

12

1

12

1

12
) ( 1

6
− 1

6
− 2

3
− 2

3
0 0 0 0)

V2,11 (− 1

3
0 −1 0 0 0 0 0 ) ( 0 − 1

3
0 −1 0 0 0 0)

V2,12 (− 1

3
1 1

3

1

3

1

3

1

3

1

3

1

3
) (− 1

3
− 1

3

1

3

1

3
0 0 0 0)

V2,13 (− 5

6

1

2

1

6

1

6

1

6

1

6

1

6

1

6
) ( 1

3
− 1

3
− 1

3
− 1

3
0 0 0 0)

V2,31 ( 2

3
0 0 0 0 0 0 0 ) ( 0 − 1

3
0 −1 0 0 0 0)

V2,32 ( 1

6
− 1

2
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
) ( 2

3
− 1

3

1

3
− 2

3
0 0 0 0)

V2,33 ( 1

6
− 1

2

1

6

1

6

1

6

1

6

1

6

1

6
) ( 1

3

2

3

2

3
− 1

3
0 0 0 0)

V3,11, V3,13 ( 0 − 1

2

1

2
0 0 0 0 0 ) ( 0 −1 0 0 0 0 0 0)

V3,12, V3,14 ( 1

4
- 3

4

1

4
− 1

4
− 1

4

1

4

1

4

1

4
) ( 1

2
− 1

2
0 0 0 0 0 0)

V3,21, V3,23 ( 0 − 1

2

1

2
0 0 0 0 0 ) ( 0 −1 0 0 0 0 0 0)

V3,22, V3,24 ( 1

4
− 3

4

1

4
− 1

4
− 1

4

1

4

1

4

1

4
) ( 1

2
− 1

2
0 0 0 0 0 0)

V4,11, V4,31 ( 1

3
0 −1 0 0 0 0 0 ) ( 0 − 2

3
0 0 0 0 0 0)

V4,12, V4,32 (− 1

6

1

2

1

6

1

6

1

6

1

6

1

6

1

6
) ( 1

3
− 2

3

2

3
− 1

3
0 0 0 0)

V4,13 (− 1

6

1

2
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
) (− 1

3
− 2

3

1

3
− 2

3
0 0 0 0)

V4,33 ( 5

6
− 1

2
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
) (− 1

3

1

3

1

3

1

3
0 0 0 0)

Table 9. Set of 32 line bundle vectors such that they solve the Bianchi identities (5.1) obtained

by using resolution i) for all 12 C3/Z6–II fixed points.

SU(3) × SU(2) gauge group living in the first E8, as this yields part of the Standard Model

gauge group. Additionally, one may not want to completely break the SO(8) × SU(2) in

the second E8, as the hidden sector gauge group must not be too small in order to allow

for the right gaugino condensation scale. In order to preserve the Standard Model gauge

group in the first E8, one has to think about which of the E8×E8 vectors can be added to

the line bundle vectors. The E8×E8 vectors must have identical entries in components 4

and 5 as well as in components 6, 7, and 8, as this is where the SU(2) and the SU(3) live,

respectively. This already reduces the number of unknowns considerably. Initially, we do

not take the gauge groups of the second E8 into consideration, as it turns out that once we

find a solution, it can be quite easily changed into a solution with better features, e.g. the

preservation of a big hidden sector gauge group.

A further complication arises from the fact that the Bianchi identities contain a lot

of inner products between line bundle vectors, which couples many equations; this makes

it hard to reduce the Bianchi identities to sets of smaller and thus easier equations. Ad-

ditionally, it is much easier to solve equations containing squares of vectors than solving

equations containing inner products. Hence we aim at rewriting as many equations as

possible in terms of vector squares only. As can be seen from (4.6), for each vector in the

θ2-sector there is a vector in the θ4-sector that has the same identification of orbifold shifts
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and Wilson lines up to a minus sign and addition of lattice vectors. By having a closer look

at the Bianchi identities one realizes that exactly these pairs of vectors appear in the inner

product (a; b) = a2 + b2 − a · b. If one requires that the vectors in such pairs are exactly

opposite, V2,s = −V4,s, the inner product reduces to (V2,s;V4,s) = 3V 2
2,s = 3V 2

4,s where s is

an appropriately chosen multi-index for (αβ). This allows us to replace all the inner prod-

ucts of the type (· ; ·) occurring in the Bianchi identities by squares of vectors. Moreover,

it further reduces the number of independent variables. For yet an additional reduction of

the number of unknowns, we extend the assumption that two vectors that have the same

orbifold shift vector and Wilson line identification are identical to the θ– and θ3-sector,

meaning V1,11 = V1,13, V1,12 = V1,14, V3,11 = V3,13, and so on. Finally, we require that

all vectors coming from the same θ-sector have the same absolute value squared. Making

these simplifications, we can cast (5.1) into the following form:

V 2
1,βγ =

25

18
, β ∈ {1, 2, 3} , γ ∈ {1, 2, 3, 4} , (5.2a)

V 2
2,αβ = V 2

4,αβ =
8

9
, α ∈ {1, 3} , β ∈ {1, 2, 3} , (5.2b)

V 2
3,αγ =

3

2
, α ∈ {1, 2} , γ ∈ {1, 2, 3, 4} , (5.2c)

V3,1γ ·
3∑

β=1

V1,βγ = 1, γ ∈ {1, 2, 3, 4} , (5.2d)

V2,αβ ·
4∑

γ=1

V1,βγ =
4

9
, α ∈ {1, 3} , β ∈ {1, 2, 3} . (5.2e)

The two remaining inner product equations (5.2d) and (5.2e) come from (5.1d) and (5.1e),

respectively. Under the simplifications, (5.1f) is automatically satisfied if (5.2e) is. It is now

easy to find a set of 32 line bundle vectors that satisfy the first three conditions(5.2a)–(5.2c).

However, it turns out that the assumptions made above are too restrictive, which

renders it impossible to find a solution for the whole set of equations (5.2) simultaneously.

Therefore, one has to abandon some of the assumptions made above. It is, however,

advantageous to keep the equations decoupled, so that we do not have to give up all the

line bundle vectors we just found from solving (5.2a) to (5.2c). This allows us to change

only a small subset of equations. Relaxing the condition V2,1β = −V4,1β leads to a violation

of (5.2b) and (5.2e) for α = 1. So one has to modify at most all the vectors involved in these

equations. However, when modifying the solution, one has to pay attention to maintaining

the vector squares as dictated by equations (5.2a) as this guarantees that the equations are

still decoupled in the sense that changing something in one equation does not influence the

validity of the other equations. In our case, it was sufficient to change V2,1β, V4,1β, and V1,β4.

With this procedure we can have a solution satisfying all 24 Bianchi identities. As

mentioned earlier, once we find a solution, it can be easily modified. The solution presented

in table 9 was found as described above and then altered8 such that the hidden sector gauge

8In fact, we altered the twelve vectors V2,αβ and V4,αβ such that they additionally correspond to a

twisted orbifold state, although this means that they violate some of the equations of (5.2). A detailed

discussion of this issue is given in subsection 5.4.
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group is SU(4), while the SU(2) is broken to U(1)’s. By construction, the SU(3) × SU(2)

Standard Model gauge group in the first E8 is conserved.

5.3 The massless spectrum

For a given solution of the Bianchi identities (5.1), we can compute the massless particle

content of our model. In order to obtain the multiplicity of the matter representations we

use equation (4.12). As in the case of the Bianchi identities, the integration can again be

carried out using the intersection numbers (tables 6 and 7), the expansion of the gauge

flux (4.1), and the relation between the curvature and the second Chern class combined

with the splitting principle (3.18). Using resolution i) for all C
3/Z6–II fixed points, this

yields the following expression for the multiplicity operator N :

N =

3∑

β=1

4∑

γ=1

H1,βγ

[
(H2,1β)3 + (H4,1β)3 − H2,1βH4,1β − (H1,βγ)2 + (H3,1γ)2

]

+
1

3

3∑

β=1

[
4 (H2,1β)3 + 4 (H4,1β)3 − H2,1β − H4,1β − 3 (H2,1β)2 H4,1β

]
(5.3)

+
1

3

4∑

γ=1

[
4 (H3,1γ)3 − H3,1γ

]
.

The expression Hr = V I
r HI is a shorthand notation for the line bundle vectors contracted

with the Cartan generators. The entries in the line bundle vectors can thus be interpreted as

the expansion coefficients of the Cartan element Hr expanded in the Cartan generators HI .

Applying the HI to some vector of the adjoint representation gives the corresponding weight

times the vector: Hr |w〉 = (Vr · w) |w〉 with w being the eigenvector (which coincides with

the root vector in case of the adjoint representation) of |w〉. Categorizing the 248 elements

(112 vectorial roots, 128 spinorial roots, 8 Cartan generators) of each E8 according to the

representation they form under the gauge group of the Standard Model SU(3) × SU(2) ×
U(1)Y in case of the first E8 and the gauge group of the hidden sector SU(4) in case of the

second E8, we obtain the spectrum given in tables 10a and 10b.

A few technical remarks concerning the spectrum are in order. First of all, each of

the eigenvalues of N are integer-valued on any of the 240 + 240 states, see table 11 for

the eigenvalues of N in the observable E8. Looking at the complicated structure of N

in (5.3) and at the rational entries that appear in the solution of the Bianchi identities

(table 9), this is a highly non-trivial observation, as the sum in N contains terms like
7
6 · 1

3
3

= 7
162 . We take this feature as a strong check that the methods we employ in

section 3 to calculate the intersection numbers are consistent. From the first row block in

table 11 we conclude that the multiplicity operator on the quark-doublets qi takes the value

−3, hence there are 3 quark-doublets. From the second row block we read off that there

are also 3 ūi. Consequently, from the third row block we infer that there are 5 d̄i and 2

charge conjugates di, because there are two states with the opposite (positive) eigenvalue.

Using this analysis the tables 10a and 10b are composed. For the singlet states that do not

carry hypercharge, we are not able to make a distinction between states or their charge
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# irrep # irrep

3 (3,2)1/6 3 (3,1)−2/3

5 (3,1)1/3 2 (3,1)−1/3

5 (1,2)−1/2 2 (1,2)1/2

6 (1,1)1 1 (1,1)−1

17 (1,1)0

(a) Massless spectrum of the first E8

# irrep # irrep

4 (4) + (4) 3 (6)

44 (1)

(b) Massless spectrum of the second E8

Table 10. Chiral massless spectrum of the model. The multiplicities are calculated using (5.3).

The representations under SU(3) × SU(2) of the first E8 and SU(4) of the second E8 are given in

boldface. The subscript denotes the hypercharge.

conjugates w.r.t. the Standard Model gauge group, hence we simply add the absolute value

of the eigenvalues of the multiplicity operator.

After these more technical comments we conclude this subsection with some more

physical remarks concerning the spectrum in tables 10a and 10b. First of all the spec-

trum is free of any non-Abelian anomalies. (The 6 of SU(4) is self-conjugate hence does

not contribute to non-Abelian anomalies.) From the spectrum we read off that there are

vector-like exotics for the right-handed down-quarks, the left-handed lepton doublet, and

the right-handed electron singlets. Disregarding some of these vector-like pairs the spec-

trum is identical to that of the Standard Model, except for two additional right-handed

electrons (1,1)1. This means that the spectrum has anomalous U(1)s and in particular the

hypercharge is anomalous. This is not a computational error, but rather confirms the gen-

eral analysis presented in subsections 4.2 and 4.3: The hypercharge is necessarily broken

as it is part of the structure group of the bundle [64]. By explicitly computing the inner

product it is immediately apparent that exactly those line bundle vectors, whose identifi-

cation contains the Wilson line W2 have non-vanishing inner product with the hypercharge

operator, and hence it is anomalous. This Wilson line is responsible for breaking the SU(5)

to the SU(3) × SU(2) Standard Model gauge group. In the conclusions we discuss a couple

of possibilities how one can avoid that this implies that the hypercharge is broken.

5.4 Identification of line bundle vectors with twisted states

Another interesting observation is that the conditions on the squares of the vectors that

we obtained from the simplified Bianchi identities (5.2) closely resemble the mass-shell

condition (2.12). In the θ-sector, one finds from the condition in the massless case ML = 0

with (p + Vg) = V1,βγ and δc = 11
36 :

V 2
1,βγ =

25

18
− 2Ñ , β ∈ {1, 2, 3} , γ ∈ {1, 2, 3, 4} .

In the case of vanishing oscillator number, this is exactly the condition found in (5.2a).

A similar observation is made when considering the θ3-sector. Here the massless equation
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E8×E8 root vector irrep QY Q2 Q3 Q4 Q5 Qanom N

(0, 0, 0, 1, 0, 1, 0, 0)(08) (3,2) 1
6 0 0 0 2 −2

3 −2

(1
2 ,−1

2 , 1
2 ,−1

2 , 1
2 ,−1

2 ,−1
2 , 1

2)(08) (3,2) 1
6

1
2 −1

2
1
2 −1

2 −2
3 −1

(0, 0, 0, 0, 0, 1, 1, 0)(08) (3,1) −2
3 0 0 0 2 −2

3 −2

(−1
2 , 1

2 , 1
2 ,−1

2 ,−1
2 ,−1

2 , 1
2 , 1

2)(08) (3,1) −2
3 −1

2
1
2

1
2 −1

2
8
3 −1

(0,−1, 0, 0, 0,−1, 0, 0)(08) (3,1) 1
3 0 −1 0 −1 −2

3 −1

(0, 0,−1, 0, 0,−1, 0, 0)(08) (3,1) 1
3 0 0 −1 −1 −4

3 −1

(0, 0, 1, 0, 0,−1, 0, 0)(08 ) (3,1) 1
3 0 0 1 −1 2 −2

(1, 0, 0, 0, 0,−1, 0, 0)(08 ) (3,1) 1
3 1 0 0 −1 −2 −1

(−1
2 , 1

2 , 1
2 , 1

2 , 1
2 ,−1

2 , 1
2 , 1

2)(08) (3,1) 1
3 −1

2
1
2

1
2

3
2 2 2

(0,−1, 0,−1, 0, 0, 0, 0)(08) (1,2) −1
2 0 −1 0 −1 −2

3 −2

(0, 0, 1,−1, 0, 0, 0, 0)(08 ) (1,2) −1
2 0 0 1 −1 2 −1

(1, 0, 0,−1, 0, 0, 0, 0)(08 ) (1,2) −1
2 1 0 0 −1 −2 −2

(1
2 ,−1

2 , 1
2 ,−1

2 , 1
2 , 1

2 , 1
2 , 1

2)(08) (1,2) −1
2

1
2 −1

2
1
2

3
2 −4

3 2

(0, 0, 0, 1, 1, 0, 0, 0)(08) (1,1) 1 0 0 0 2 −2
3 −2

(−1
2 , 1

2 , 1
2 , 1

2 , 1
2 ,−1

2 ,−1
2 ,−1

2)(08) (1,1) 1 −1
2

1
2

1
2 −1

2
8
3 1

(1
2 ,−1

2 , 1
2 , 1

2 , 1
2 ,−1

2 ,−1
2 ,−1

2)(08) (1,1) 1 1
2 −1

2
1
2 −1

2 −2
3 −4

(−1,−1, 0, 0, 0, 0, 0, 0)(08) (1,1) 0 −1 −1 0 0 4
3 −1

(−1, 0,−1, 0, 0, 0, 0, 0)(08) (1,1) 0 −1 0 −1 0 2
3 1

(−1, 0, 1, 0, 0, 0, 0, 0)(08 ) (1,1) 0 −1 0 1 0 4 −2

(−1, 1, 0, 0, 0, 0, 0, 0)(08 ) (1,1) 0 −1 1 0 0 10
3 2

(0,−1, 1, 0, 0, 0, 0, 0)(08 ) (1,1) 0 0 −1 1 0 2
3 1

(−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 )(08) (1,1) 0 −1
2 −1

2 −1
2 −5

2
2
3 4

(−1
2 , 1

2 , 1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 )(08) (1,1) 0 −1
2

1
2

1
2 −5

2
10
3 4

(1
2 ,−1

2 , 1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 )(08) (1,1) 0 1
2 −1

2
1
2 −5

2 0 −2

Table 11. Detailed massless chiral spectrum of the first E8 computed from the solution given

in table 9. The Q’s are the eight U(1) charges computed using the operators defined in [22].

The vectors are grouped by their value QY under the hypercharge operator (2.25). Qanom is the

anomalous U(1) charge (2.26) on the orbifold. As we are looking at the first E8 only, Q6 to Q8 are

zero. N is the eigenvalue of the corresponding E8×E8 root vector under the multiplicity operator.

reads with δc = 1
4 :

V 2
3,αγ =

3

2
− 2Ñ , α ∈ {1, 2}

which is again the same condition as we obtained in (5.2c) with the oscillator number set

to zero. However, for the θ2– and θ4-sector, things look a bit different. Here, δ = 2
9 , and
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one finds

V 2
2,αβ =

14

9
− 2Ñ , α ∈ {1, 3}

V 2
4,αβ =

14

9
− 2Ñ , α ∈ {1, 3} .

In this sector the simplified Bianchi identities (5.2b) dictate a non-vanishing Ñ for the

massless spectrum. The solution we are giving in table 9 was modified such that V 2
2,αβ =

V 2
4,αβ = 14

9 holds for as many of these vectors as considered possible (i.e. for all but V2,11 and

V2,12). Note that it was also condition (5.2b) that was relaxed in order to find a solution.

This shows that it is also possible to demand V 2
2,αβ = V 2

4,αβ = 14
9 instead of (5.2b). However,

this does not change the fact that (V2,αβ , V4,αβ)
!
= 8

3 which is needed to solve (5.1b), but it

does not allow for the identification V2,αβ = −V4,αβ.

Interestingly, in our solution V 2
2,11 = V 2

2,12 = 20
9 , which cannot be satisfied with a

non-negative oscillation number. So these two states have a non-zero mass,

M2
L =

8

3
+ 8Ñ ,

and hence correspond to massive twisted states. The level-matching condition M2
L = M2

R

given below (2.12) can still be satisfied by choosing an appropriate SO(8) vector q. The

fact that these states have a non-zero mass seems to imply that the fixed points E2,11 and

E2,12 do not acquire a vacuum expectation value and hence are not blown up. However,

these fixed points are nevertheless resolved in the sense that the singularities have been

cut out and a resolution has been glued in as discussed in section 3. The resolution simply

does not have a finite volume, i.e. its Kähler modulus vanishes.

As mentioned above, the solution for the Bianchi identities is by far not unique. The

non-uniqueness is two-fold: On the one hand, given a combination of resolutions for the

twelve fixed points (in our example resolution i) twelve times), it is possible to find different

combinations of line bundle vectors that satisfy the associated Bianchi identities. Different

solutions exhibit different behavior with respect to the unbroken gauge groups and the

number of scalars and vector-like exotics in the model. For example, if one adds the

E8×E8 lattice vector (03, 12, 03)(08) to V1,11 and/or to V1,13, the particle content of the

model is changed with respect to the exotics, yet the new set of vectors still satisfies the

Bianchi identities. On the other hand, given a set of 32 line bundle vectors, there exist

different combinations of local resolutions such that the resulting Bianchi identities are

satisfied by this set of vectors. In our case, one could for example use any combination of

the five possible triangulations at the fixed points E1,31 and E1,33.

As discussed in subsection 4.2 below (4.23), the axionic states can be identified with

twisted states from the orbifold. The spectrum of the orbifold for the chosen model is

given in the appendix of [22]. The identifications can be made by comparing the bundle

vectors with the weights of the corresponding twisted states (or equivalently by comparing

the charges and non-Abelian representations given in the table of [22]). Since the complex

scalars in chiral multiplets are composed of two real scalars, that are each other’s charge

conjugates, these identifications are made up to overall signs of the weight vectors. table 12
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θ–sector θ2–sector θ3–sector θ4–sector

V1,11 ↔ n1 V2,11 ↔ massive V3,11 ↔ projected out V4,11 ↔ s0
26

V1,12 ↔ s−2 V2,12 ↔ massive V3,12 ↔ s+
14 V4,12 ↔ h7

V1,13 ↔ n4 V2,13 ↔ n15 V3,13 ↔ projected out V4,13 ↔ h12

V1,14 ↔ s−5 V2,31 ↔ h20 V3,14 ↔ s+
18 V4,31 ↔ s0

28

V1,21 ↔ n4 V2,32 ↔ h21 V3,21 ↔ projected out V4,32 ↔ h9

V1,22 ↔ x−
1 V2,33 ↔ h25 V3,22 ↔ s+

15 V4,33 ↔ n8

V1,23 ↔ n6 V3,23 ↔ projected out

V1,24 ↔ x−
2 V3,24 ↔ s+

19

V1,31 ↔ w1

V1,32 ↔ s−7

V1,33 ↔ w2

V1,34 ↔ s−10

Table 12. Identification between the orbifold states and the line bundle vectors. The nomenclature

of the twisted states is summarized in table 2 and taken from [22]. Here “massive” means that the

vector corresponds to a massive orbifold state. The vectors tagged with “projected out” are present

in the six dimensional theory but are projected out in four dimensions.

gives a list of the line bundle vectors and the corresponding orbifold states. In the θ2-sector,

the two vectors V2,11 and V2,12 that acquire a mass do not have a matching orbifold state.

All other states from this sector can be identified with line bundle vectors. In the θ3

case this is similar. For V3,2γ , also each line bundle vector can be found in the third

twisted sector. The four vectors V3,1γ are present in the six dimensional spectrum, but are

projected out in four dimensions. In the θ– and θ4-sector, there is an orbifold state for

each line bundle vector.

The possibility of identifying orbifold states and line bundle vectors suggests a differ-

ent approach to solving the Bianchi identities. Namely one starts with a set of 32 line

bundle vectors that satisfy the resolution independent Bianchi identities (4.11) and scans

over possible combinations of triangulations. At first sight this seems hopeless due to the

vast amount of physically inequivalent models that can be obtained by combining the five

different resolutions (cf. section A in the appendix). However, as stated at the beginning of

subsection 5.1, the twelve Bianchi identities obtained from integrating over E1,βγ depend

on the local resolution only. This makes it possible to check for each of the twelve C
3/Z6–II

fixed points which of the five resolutions are allowed. One can hope that this leaves a

subset small enough to compute the Bianchi identities for all possible combinations of the

subset and check whether there exists a combination of resolutions such that the associated

Bianchi identities are solved by the initially chosen set of line bundle vectors.
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6 Conclusions

One of the objectives of string phenomenology is to construct string realizations of MSSM-

like models. Heterotic orbifolds have been successful in achieving this goal, especially

those which build on the T 6/Z6–II orbifold. Heterotic orbifolds can be exactly described

using CFT techniques, while Calabi-Yau compactifications are mostly described in the

supergravity regime. Orbifolds as geometrical spaces are often considered as singular limits

of smooth Calabi-Yau manifolds; it is therefore interesting to investigate what happens to

these orbifold models in blowup, i.e. when all singularities are smoothed out. In this paper

we explained how T 6/Z6–II orbifold models can be recovered in a supergravity language.

We achieved this as follows:

To set the stage we began by reviewing the construction of heterotic MSSM T 6/Z6–II

orbifolds. These orbifold models are characterized by a geometrical shift, and a gauge shift

and Wilson lines that act on the gauge degrees of freedom, which are severely constrained

by modular invariance. The twisted sectors live on codimension six singularities C
3/Z6–II

and two types of codimension four singularities, C
2/Z3 and C

2/Z2. To allow for the inter-

pretation of some of the heterotic T 6/Z6–II orbifolds as MSSM-like models it was crucial

to identify a non-anomalous hypercharge.

To determine a supergravity realization of an T 6/Z6–II orbifold model, the first step was

to characterize the topological properties of the smooth Calabi-Yau geometry corresponding

to the blowup of this orbifold. The isolated conical singularities of this orbifold were

resolved using toric geometry techniques that identify exceptional divisors hidden inside

them. On these exceptional cycles the twisted states can be thought of being localized

in the resolved picture, but in the blow down regime. These local resolutions were glued

together according to the procedure described in detail in [30]. This gluing process adds

three more divisors inherited from the covering torus T 6, giving 35 divisors in total. We

described their intersection numbers, the characteristic classes and the Kähler cone of the

global resolution. The T 6/Z6–II orbifold can be resolved in many topologically distinct

ways: Since each of the 12 C
3/Z6–II singularities has five possible resolutions, there are

almost two millions ways to do so.

In the second step we singled out the analog of the gauge shift vector and the Wilson

lines from the orbifold theory in blowup. We considered wrapped Abelian gauge fluxes

on the exceptional divisors as line bundles for two reasons: This choice automatically

fulfills the requirement that they must be (1,1)–forms, and for such gauge backgrounds

we could formulate a precise identification with these orbifold inputs (gauge flux on the

inherited divisors would correspond to orbifolds with magnetized tori). The 24 resolution

dependent consistency conditions are obtained by integrating the Bianchi identity of the

anti-symmetric tensor field over 35 divisors of the resolution of T 6/Z6–II. These conditions

play a similar role as the modular invariance conditions on the orbifold: They severely

constrain the possible choices for the 32 bundle vectors that characterize the line bundles

embedded in E8×E8.

After this we studied the basic physical properties of the resulting blowup models that

can be analyzed by topological means only. We computed the spectrum of the resolved
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models by integrating the ten dimensional gaugino anomaly polynomial on the resolved

T 6/Z6–II orbifold in the presence of the Abelian gauge fluxes. The multiplicities of the

states, that appear in the decomposition of the E8×E8 w.r.t. the unbroken gauge group,

can be determined from the resulting four dimensional anomaly polynomial (this approach

is more sensitive than standard index theorems, because any state, even if it is not charged

under the Standard Model, is chiral with respect to some of the U(1) factors singled out

by the gauge flux). Moreover, this analysis shows that the non-Abelian anomalies are

absent, provided that the 24 Bianchi identities are satisfied, but in accordance with [55, 56]

multiple anomalous U(1)’s are possible. These anomalous U(1)’s are canceled by anomalous

variations of axions βr that appear in the expansion of the anti-symmetric tensor B2 on

the resolution. Their shift transformations reveal that they are the reincarnation of the

twisted states Ψr, that generated the blowup from the orbifold point of view by taking

non-vanishing VEV’s (one per fixed point or fixed line). Their identification Ψr ∼ e2πUr ,

where the chiral superfields Ur contain the axions βr (see [68]) and the Kähler moduli br

that measure the volumes of the exceptional divisors, has some far reaching consequences.

As the identification of a non-anomalous hypercharge was a crucial ingredient in the

orbifold construction of MSSM-like models, it was important to study the fate of the

hypercharge in blowup. The anomaly analysis on the resolution showed that the standard

SU(5) hypercharge is always among the anomalous U(1)’s, unless it is perpendicular to all

line bundle vectors. The identification of the line bundle vectors with the orbifold shift

vector and Wilson lines implies that for the models in the heterotic ”mini-landscape” [21]

the hypercharge is only perpendicular to all of them, when one of the Wilson lines leads to

breaking of the weak SU(2) in blowup. Therefore the Standard Model gauge group cannot

be completely preserved in blowup. The matching between the blowup axions and the

twisted states with VEV’s lead to the same conclusion: If the orbifold is completely blown

up, for each of the 32 exceptional divisors a twisted state takes a non-vanishing VEV. Since

any of the heterotic MSSM models in the “mini-landscape” [21] has fixed points where all

the twisted fields are charged under the hypercharge (or under some other MSSM gauge

interactions), the Standard Model gauge group can only be preserved if not all singularities

are blown up.

Such a “partial” blowup does not render the construction of the orbifold resolution

inconsistent, because the amount of blowup is irrelevant as a resolution is defined by topo-

logical information only, but signals the loss of control over the supergravity construction:

Defining a (partial) blow down by having vanishing VEV’s for (some of) the twisted states

implies via the identification Ψr ∼ e2πUr that (some of) the Kähler moduli br → −∞: The

volumes (of some) exceptional cycles do not tend to zero but become minus infinite using

the standard “classical” geometrical notion of volumes. According to [50] this regime can

only be described as a “string” geometry, where string corrections to the supergravity de-

scription become dominant. This is in particular true for the orbifold point in the moduli

space where the orbifold CFT provides the correct description.

Only purely topological quantities are unaffected by the break down of the supergravity

description in (a partial) blow down. At the level of gauge symmetry and spectrum the

only minor caveat is that in the blow down regime the blowup moduli Ψr have vanishing
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VEV’s. This might result in gauge symmetry enhancement, axions reappearing as twisted

states, and some vector-like states might become massless via vanishing Yukawa couplings

that involve these blowup moduli. These effects are completely under control in the orbifold

description, but cannot be followed in the supergravity description as it needs to receive

string correction which are (mostly) unknown. As these stringy effects lead to corrections to

the Hermitian Yang-Mills equations, in particular the stability of the bundle also becomes

a subtle issue in (a partial) blow down. However, at least for line bundles, stability is just

a constraint on the Kähler moduli of the space, but not on the existence of these Abelian

bundles itself. This means that our identification of the bundle vectors and the orbifold

gauge shift and Wilson lines is self-consistent.

In order to check and to illustrate our general findings we specified our study to the

construction of a blowup of a heterotic orbifold having the MSSM spectrum, the so-called

“benchmark model 2” [21, 22, 38]. For the explicit study of a blowup it is crucial to solve

the 24 resolution dependent Bianchi identities. This is a highly non-trivial task in general,

but we found two procedures to address this problem. In the first approach one chooses a

particular resolution of the 12 C
3/Z6–II fixed points; in our case we took resolution i) for

all of them. By making some simplifying assumptions on the bundle vectors, the system of

equation reduces to a set from which a solution can be guessed much easier. Once such a

solution is found, it can be easily modified to satisfy additional requirements. In this way

we found a resolution which preserves the SU(2) and SU(3) of the Standard Model, and

an SU(4) in the hidden sector. The spectrum in blowup is essentially that of the MSSM

with some exotics and two additional right-handed electrons. But as the general analysis

indicated the hypercharge is broken in full blowup.

The identification between the blowup axions and the twisted states whose VEV’s

generate the blowup suggests a second method to construct blowup models: The twisted

states are identified by weight vectors (or shifted momenta) on the gauge E8×E8 lattice.

The identification implies that these weight vectors can be interpreted as bundle vectors

that define the blowup using Abelian fluxes. This allows one to chose 32 bundle vectors

corresponding to twisted states at each of the fixed points and lines, and then search for

a resolution of the T 6/Z6–II for which the 24 Bianchi identities are solved by this choice.

As our explicit example using resolution i) everywhere showed, these twisted states can be

those that exist as massless twisted states in an effective four dimensional orbifold model,

as massless twisted states in six dimensions that are projected out, and even as massive

twisted states. Because there are almost two million possible resolutions of the T 6/Z6–II,

determining solutions in this way can be a time consuming process.

Finally, let us comment on possibilities to overcome the problem that none of the

models studied in [21] will have an unbroken U(1)Y in complete blowup. First of all, from

the string moduli space perspective it is not impossible that some cycles remain so small

that the hypercharge is effectively unbroken. This would imply that the Standard Model is

only realized close to special points in moduli space with enhanced symmetry with singular

geometry. The only price one pays is a large fine tuning between the volumes of different

cycles that may be considered unnatural. Secondly one could imagine that the VEV of

twisted states (i.e. Standard Model Higgses) is such that electroweak symmetry breaking
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corresponds to blowing up some fixed points. Since the electroweak scale is much smaller

than the Planck scale this reintroduces the fine tuning problem.

Another option could be to consider a model where the GUT group is not broken in any

of the orbifold singularities, i.e. by any of the orbifold actions having fixed points in the inter-

nal space (see e.g. [74]). Unfortunately we are not aware of any model built on such geome-

tries having just the MSSM spectrum. Alternatively, one could think about models where

the hypercharge is not arising from a GUT breaking like SU(5)→ SU(3)×SU(2)×U(1), but

it includes a mixing with other U(1)’s present in heterotic models. Such a non-GUT embed-

ding of the hypercharge in the heterotic orbifold has been considered in [75]. However, for

the only model described explicitly there, the hypercharge is not perpendicular to all the

bundle vectors that arise from the chosen gauge shift and Wilson lines, hence still the hy-

percharge is broken in complete blowup in that particular model. Whether this is a general

feature of all models with non-GUT embedded hypercharge would require further study.
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A Counting of different triangulations

Here we want to describe the manner in which we counted different triangulation possi-

bilities. In order to do so, we remind the reader that the self-intersection numbers are

obtained by multiplying the linear equivalence relations (3.11) with all curves and solving

the system of linear equations. From this it follows that self-intersections containing only

a certain β depend on the triangulations of all fixed points labeled by this β. Consider for

example

R1 ∼ 6D1,1 +

3∑

β′=1

4∑

γ=1

E1,β
′
γ +

3∑

β′=1

(
2E2,1 β

′ + 4E4,1 β
′

)
+ 3

4∑

γ=1

E3,1 γ | · E2
2,1 β (A.1)

⇒ 0 ∼
4∑

γ=1

E1,βγE2
2,1 β + 2E3

2,1 β + 4E2
2,1 βE4,1 β + 3

4∑

γ=1

E2
2,1 βE3,1 γ .

The intersection numbers that do not contain γ depend via those containing γ on the

triangulation of all fixed points over which is summed. These are all the fixed points
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R1R2R3 = 6 R2E
2
3,1 γ = −2 R2E

2
3,2 γ = −6 R3E

2
2,1 β = −2

R3E
2
2,3 β = −4 R3E

2
4,1 β = −2 R3E

2
4,3 β = −4 R3E2,1 βE4,1 β = 1

R3E2,3 βE4,3 β = 2

Table 13. The triangulation independent intersection numbers of Res
(
T 6/Z6–II

)
.

Triangulation i)

E3
1,βγ = 6 E3

2,1 β = 8 E3
3,1 γ = 8 E3

4,1 β = 8

E1,βγE2
2,1 β = −2 E1,βγE2

3,1 γ = −2 E1,βγE2
4,1 β = −2 E1,βγE2,1 βE4,1 β = 1

E2
2,1 βE4,1 β = −2

Triangulation ii)

E3
1,βγ = 7 E3

2,1 β = 8 E3
3,1 γ = 5 E3

4,1 β = 4

E1,βγE2
2,1 β = −2 E1,βγE2

3,1 γ = −1 E2
1,βγE3,1 γ = −1 E1,βγE2

4,1 β = −1

E3,1 γE2
4,1 β = −1 E2

1,βγE4,1 β = −1 E2
2,1 βE4,1 β = −2 E2

3,1 γE4,1 β = −1

E1,βγE2,1 βE4,1 β = 1 E1,βγE3,1 γE4,1 β = 1

Triangulation iii)

E3
1,βγ = 8 E3

2,1 β = 4 E3
3,1 γ = 2 E3

4,1 β = 8

E1,βγE2
2,1 β = −1 E2

1,βγE2,1 β = −1 E2
1,βγE3,1 γ = −2 E2,1 βE2

3,1 γ = −1

E2
2,1 βE3,1 γ = −1 E2,1 βE2

4,1 β = −4 E2
2,1 βE4,1 β = 2 E3,1 γE2

4,1 β = −2

E1,βγE2,1 βE3,1 γ = 1 E2,1 βE3,1 γE4,1 β = 1

Triangulation iv)

E3
1,βγ = 9 E3

2,1 β = 8 E3
3,1 γ = −1 E3

4,1 β = 8

E1,βγE2
3,1 γ = 1 E2

1,βγE3,1 γ = −3 E2
2,1 βE3,1 γ = −2 E2,1 βE2

4,1 β = −4

E2
2,1 βE4,1 β = 2 E3,1 γE2

4,1 β = −2 E2,1 βE3,1 γE4,1 β = 1

Triangulation v)

E3
1,βγ = 8 E3

2,1 β = 8 E3
3,1 γ = 8 E1,βγE2

2,1 β = −2

E2
1,βγE4,1 β = −2 E2

2,1 βE4,1 β = −2 E1,βγE2,1 βE4,βγ = 1

Table 14. Triangulation dependent intersection numbers of Res
(
T 6/Z6–II

)
for the five cases in

which all twelve C3/Z6–II fixed points are resolved with the same triangulation.

that are labeled by β. The sum over γ implies that only the total number of occurring

triangulations is important, but not which triangulation is chosen for which γ in particular.

The same argument holds if one considers self-intersections that contain only a certain
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γ. Those numbers depend on the triangulations of all fixed points labeled by this γ, but

again only the total number of occurring triangulations is important.

To visualize this we introduce a 3 × 4 matrix

M =




t1,1 t1,2 t1,3 t1,4

t2,1 t2,2 t2,3 t2,4

t3,1 t3,2 t3,3 t3,4


 ,

where each entry tβ,γ can take a value from 1 to 5. Therefore M represents a specific

triangulation of the resolved orbifold. The triangulations of the fixed points with a fixed β

are given by a row of M , while the columns represent the triangulations of the fixed points

with a fixed γ. The above considerations mean, that two triangulations are equivalent if

the corresponding matrices can be transferred into each other by permutations of whole

columns and whole rows.

An estimate of the inequivalent triangulations is obtained by taking one column as one

index which runs from 1 to 53, symmetrize in the four indices and divide the result by 3!

(the permutation symmetry factor of a column). This gives

p1 =
1

3!

(
53 + 4 − 1

4

)
≈ 1.78 × 106 . (A.2)

Taking one row as one index (running from 1 to 54), symmetrizing the resulting three

indices and dividing by 4! gives

p2 =
1

4!

(
54 + 3 − 1

3

)
≈ 1.70 × 106 . (A.3)

These two estimates are not equal. This is due to the fact that we divided by the full sym-

metry factor of columns and rows, respectively. By doing this we underestimate the total

number, since for example the case tβ,γ = 1 (for all β, γ) is invariant under permutation

and should not be divided by the symmetry factor. By using a computer to check how

many matrices there are that cannot be converted into each other by interchanging rows

and columns we found that the number of physically different triangulations is

#(triangulations) = 1.797.090 , (A.4)

which is quite close to the two estimates made above.

B Details of T 6/Z6–II resolutions

In this appendix we give some details of resolutions of T 6/Z6–II that are triangulation

dependent. In table 13 and table 14 we give the triangulation independent intersection

numbers and the triangulation dependent intersection numbers for the cases in which all

twelve C
3/Z6–II fixed points have the same triangulation.
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divisor S Vol(S) = 1
2J2S

E1,βγ 3b2
1,βγ − b2

3,1 γ − (b2,1 β; b4,1 β)

E2,1 β a3(2b2,1 βb4,1 β) + 4b2
2,1 β − 2b2,1 βb4,1 β +

4∑
γ=1

b1,βγ(−2b2,1 β + b4,1 β)

E4,1 β −a3(b2,1 β − 2b4,1 β) − b2
2,1 β + 4b2

4,1 β +
4∑

γ=1
b1,βγ(b2,1 β − 2b4,1 β)

E2,3 β 2a3(2b2,3 β − b4,3 β)

E4,3 β −2a3(b2,3 β − 2b4,3 β)

E3,1 γ 2a2b3,1 γ + 4b2
3,1 γ − 2b3,1 γ

3∑
β=1

b1,βγ

E3,2 γ 6a2b3,2 γ

R1 6a2a3

R2 6a1a3 −
4∑

γ=1
b2
3,1 γ − 3

4∑
γ=1

b2
3,2 γ

R3 6a1a2 −
3∑

β=1

(b2,1 β; b4,1 β) − 2
3∑

β=1

(b2,3 β; b4,3 β)

Table 15. The volumes of the divisors of Res
(
T 6/Z6–II

)
.

Table 15 gives the volumes of the exceptional and inherited divisors. The volumes of

the inherited divisors have to be larger than zero. Exceptional divisors of blown up fixed

points also obtain positive volumes.

The volumes of compact curves are given in table 16 and table 17. To get positive

volumes, ai and bi have to be positive. All volumes depend on the chosen triangulation.

The results given in the tables are obtained if all fixed points are resolved with triangulation

i). Furthermore, the curves in table 16 exist only in this case, while those of table 17 exist

for all triangulations.
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curve C Vol(C) = JC curve C Vol(C) = JC

D1,1E1,βγ b1,βγ − b3,1 γ − b4,1 β E1,βγE4,1 β −b2,1 β + 2b4,1 β

E1,βγE2,1 β 2b2,1 β − b4,1 β D2,βE1,βγ 2b1,βγ − b2,1 β

D3,γE1,βγ 3b1,βγ − b3,1 γ E1,βγE3,1 γ b3,1 γ

Table 16. Volumes of the curves that exist if all Z6–II fixed points are resolved with triangulation i).

curve C Vol(C) = JC curve C Vol(C) = JC

R1R2 6a3 R3E2,1 β 2b2,1 β − b4,1 β

R1R3 6a2 R3E2,3 β 2b2,3 β − b4,3 β

R2R3 6a1 R3E4,1 β −b2,1 β + 2b4,1 β

R1D2,β 2a3 R3E4,3 β −b2,3 β + 2b4,3 β

R1D3,γ 3a2 R2E3,1 γ 2b3,1 γ

R2D1,1 a3 −
4∑

γ=1
b3,1 γ R2E3,2 γ b3,2 γ

R2D1,2 3a3 − 3
4∑

γ=1
b3,2 γ D1,1E3,1 γ a2 −

3∑
β=1

b1,βγ + 3b3,1 γ

R2D1,3 2a3 D1,2E3,2 γ 3a2

R2D3,γ 3a1 − b3,1 γ − 3b3,2 γ D1,1E4,1 β a3 −
4∑

γ=1
b1,βγ + 4b4,1 β

R3D1,1 a2 −
3∑

β=1

b4,1 β D1,3E4,3 β 2a3

R3D1,2 3a2 D2,βE2,1 β a3 −
4∑

γ=1
b1,βγ + 2b2,1 β

R3D1,3 a2 −
3∑

β=1

b4,3 β D2,βE2,3 β 2a3

R3D2,β 2a1 − b2,1 β − 2b2,3 β D2,βE3,2 γ 2b3,2 γ

D1,2D2,β a3 −
4∑

γ=1
b3,2 γ D3,γE3,1 γ a2 −

3∑
β=1

b1,βγ + b3,1 γ

D2,βD3,γ a1 − b1,βγ − b2,3 β + b3,2 γ D3,γE3,2 γ 3a2

D1,3E4,3 β 2a3 D3,γE2,3 β 2b2,3 β − b4,3 β

D3,γE4,3 β −b2,3 β + 2b4,3 β

E2,1 βE4,1 β a3 −
4∑

γ=1
b1,βγ + 2b2,1 β

E2,3 βE4,3 β 2a3

Table 17. The volumes of compact curves existing independently of the triangulation of

Res
(
T 6/Z6–II

)
for the case in which all Z6–II fixed points are resolved with triangulation i).
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